Skip to main content
Log in

Bioequivalence Study of Stressed and Nonstressed Hard Gelatin Capsules Using Amoxicillin as a Drug Marker and Gamma Scintigraphy to Confirm Time and GI Location of In Vivo Capsule Rupture

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose: Evaluate if crosslinked hard gelatin capsules (HGCs) havingdifferent in vitro dissolution profiles changed in vivo release times oraltered bioavailability of a drug marker; assess if a two-tier dissolutiontest (with and without enzyme) predicted in vivo performance.

Methods. Two classifications of stressed HGCs were artificiallyproduced by exposure to formaldehyde (HCHO). HGCs were categorizedas, a) pass/pass (p/p) which met in vitro dissolution criterion (75%drug dissolution at 45 min), b) moderately crosslinked fail/pass (f/p)which failed dissolution criterion in the absence of enzymes and passedin the presence of enzymes, and c) severely crosslinked fail/fail (f/f)which failed in vitro standards with or without enzymes. A six-way,single dose bioequivalence study (n = 10) administered the three HGCsunder the fasted and fed condition. In vivo capsule rupture and GItransit were monitored via gamma scintigraphy, and blood sampleswere collected through six hours.

Results. Each crosslinked HGC was bioequivalent to the control p/pcapsule when using AUC(0−∞) and Cmax for comparison. Meanin vivo disintegration of the p/p capsule was 7 ± 5 min for the fastedcondition and 11 ± 7 min for the fed condition. In vivo rupture forthe f/p capsule was 22 ± 12 min and 23 ± 11 min for the fasted andfed studies, respectively, while the f/f HGC ruptured at 31 ± 15 minand 71 ± 19 min under the fasted and fed condition, respectively.Onset of amoxicillin absorption was dependent on in vivo HGC ruptureand subsequent entry of the released radioactive marker into the smallintestine. Consequently, fasted Tmax values were significantly laterfor the f/p HGC (1.62 ± 0.53 hr) and f/f HGC (1.85 ± 0.58 hr) ascompared to the p/p HGC (1.17 ± 0.30 hr). Fed Tmax values werestatistically different only for the f/f capsule (2.55 ± 0.44 hr) whereTmax values for the p/p and f/p HGCs under the fed condition were1.50 ± 0.47 hr and 1.60 ± 0.46 hr, respectively.

Conclusions. A two-tier dissolution procedure that retested across-linked hard gelatin capsule with addition of gastric or intestinal enzymesprovided an adequate in vitro indicator of the formulation'sin vivo performance. The observed delays in the onset of amoxicillin absorptionand Tmax for the severely crosslinked f/f HGC was attributed todelayed in vivo capsule rupture, however, this delay did not adverselychange AUC(0−∞) nor Cmax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

REFERENCES

  1. G. A. Digenis, T. B. Gold, and V. P. Shah. Cross-linking of gelatin capsules and its relevance to their in vitro· in vivo performance. J. Pharm. Sci. 83:915–921 (1994).

    Google Scholar 

  2. S. K. Taylor, F. Davidson, and D. W. Ovenall. Carbon-13 nuclear magnetic resonance studies on gelatin crosslinking by formaldehyde. Photogr. Sci. Eng. 22:134–138 (1978).

    Google Scholar 

  3. K. Albert, B. Peters, E. Bayer, U. Treiber, and M. Zwilling. Crosslinking of gelatin with formaldehyde: a 13C NMR study. Z. Naturforsch. 41:351–358 (1986).

    Google Scholar 

  4. K. Albert, E. Bayer, A. Worsching, and H. Vogele. Investigation of the hardening reaction of gelatin with 13C labeled formaldehyde by solution and solid state 13C NMR spectroscopy. Z. Naturforsch. 46:385–389 (1991).

    Google Scholar 

  5. T. B. Gold, S. L. Smith, and G. A. Digenis. Studies on the influence of pH and pancreatin on 13C-formaldehyde induced gelatin crosslinks using nuclear magnetic resonance. Pharm. Dev. Technol. 1:21–26 (1996).

    Google Scholar 

  6. H. Fraenkel-Conrat, M. Cooper, and H. S. Olcott. Reaction of formaldehyde with proteins. J. Am. Chem. Soc. 67:950–954 (1945).

    Google Scholar 

  7. P. Davis and B. E. Tabor. Kinetic study of the crosslinking of gelatin by formaldehyde and glyoxal. J. Polym. Sci. A1:799–815 (1963).

    Google Scholar 

  8. J. T. Carstensen and C. R. Rhodes. Pellicule formation in gelatin capsules. Pharm. Dev. Ind. Pharm. 19:1811–1814 (1993).

    Google Scholar 

  9. T. B. Gold, J. Buice RG, R. A. Lodder, and G. A. Digenis. Determination of extent of formaldehyde-induced cross-linking in hard gelatin capsules by near-infrared spectrophotometry. Pharm. Res. 14:1046–1050 (1997).

    Google Scholar 

  10. H. Mohamad, R. Renoux, S. Aiache, and J. M. Aiache. Study on the biopharmaceutical stability of medicines: application to tetracycline hydrochloride capsules I. In vitro study. S.T.P. Pharma. 2:531–535 (1986).

    Google Scholar 

  11. E. Doelker and A. C. Vial-Bernasconi. Interactions contenant-contenu au sein des capsules gelatineaues et evaluation critique de leurs effects sur la disponibilite des principes actifs. S.T.P. Pharma. 4:298–306 (1988).

    Google Scholar 

  12. M. Donbrow. Stability of the polyoxyethylene chain. Surfactant Sci. Ser. 23:1011–1072 (1987).

    Google Scholar 

  13. J. R. Schwier, G. G. Cooke, K. J. Hartauer, and L. Yu. Rayon: a source of furfural· a reactive aldehyde capable of insolubilizing gelatin capsules. Pharm. Technol. 17:78–79 (1993).

    Google Scholar 

  14. S. A. H. Khalil, L. M. M. Ali, and M. M. Abdel-Khalek. Effects of aging and relative humidity on drug release, Part I: Chloramphenicol capsules. Pharmazie 29:36–37 (1974).

    Google Scholar 

  15. H. W. Gouda, M. A. Moustafa, and H. I. Al-Shora. Effect of storage on nitrofurantoin solid dosage forms. Int. J. Pharm. 18:213–315 (1984).

    Google Scholar 

  16. P. York. The shelf-life of some antibiotic preparations stored under tropical conditions. Pharmazie 32:101–104 (1977).

    Google Scholar 

  17. H. Mohamad, R. Renoux, S. Aiache, J.-M. Aiache, and J.-P. Kantelip. Study on the biopharmaceutical stability of medicines: application of to tetracycline hydrochloride capsules II. In vivo study. S.T.P. Pharma. 2:630–635 (1986).

    Google Scholar 

  18. H. Mohamad, J.-M. Aiache, R. Renoux, P. Mougin, and J.-P. Kantelip. Study on the biopharmaceutical stability of medicines: application to tetracycline hydrochloride capsules IV. Complementary in vivo study. S.T.P. Pharma. 3:407–411 (1987).

    Google Scholar 

  19. H. Mohamad, J.-M. Aiache, R. Renoux, P. Mougin, J. Sirot, and J.-P. Kantelip. Study on the biopharmaceutical stability of medicines III: Application to ampicillin trihydrate capsules in vitro/in vivo study. S.T.P. Pharma. 2:912–917 (1986).

    Google Scholar 

  20. M. Dey, R. Enever, M. Kraml, D. G. Prue, D. Smith, and R. Weirstall. The dissolution and bioavailability of etodolac from capsules exposed to high-humidity conditions. Pharm. Res. 10:1295–1300 (1993).

    Google Scholar 

  21. D. Cade, N. Madit, and E. Cole. Development of a test procedure to consistently crosslink hard gelatin capsules with formaldehyde. Pharm. Res. 11:S147 (1994).

    Google Scholar 

  22. C. Noory, et al. Collaborative development of two-tier dissolution testing for gelatin capsules and gelatin-coated tablets using enzyme-containing media. Pharmacopeial Forum 24:7045–7050 (1998).

    Google Scholar 

  23. J. Sjövall, G. Alván, and D. Westerlund. Dose-dependent absorption of amoxycillin and bacampicillin. Clin. Pharm. Ther. 38: 241–250 (1985).

    Google Scholar 

  24. D. J. Schuirmann. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokin. Biopharm. 15:657–680 (1987).

    Google Scholar 

  25. G. A. Digenis, E. P. Sandefer, A. F. Parr, R. M. Beihn, C. McClain, B. M. Scheinthal, I. Ghebre-Sellassie, U. Iyer, R. U. Nesbitt, and E. Randinitis. Gastrointestinal behavior of orally administered radiolabeled erythromycin pellets in man as determined by gamma scintigraphy. J. Clin. Pharmacol. 30:621–631 (1990).

    Google Scholar 

  26. E. P. Sandefer, R. M. Beihn, A. F. Parr, B. M. Scheinthal, I. Ghebre-Sellassie, U. Iyer, R. U. Nesbitt, and G. A. Digenis. Erythromycin bioavailability and small intestine transit dependency: An evaluation by gamma scintigraphy. Pharm. Res. 6:S-155 (1989).

    Google Scholar 

  27. G. A. Digenis and E. P. Sandefer. Gamma scintigraphy and neutron activation techniques in the in vivo assessment of orally administered dosage forms. Crit. Rev. Ther. Drug Carrier Sys. 7:309–345 (1991).

    Google Scholar 

  28. K. M. Koch, A. F. Parr, J. J. Tomlinson, E. P. Sandefer, G. A. Digenis, K. H. Donn, and J. R. Powell. Effect of SAPP on ranitidine bioavailability and gastrointestinal transit time. Pharm. Res. 9:S-324 (1992).

    Google Scholar 

  29. K. M. Koch, A. F. Parr, J. J. Tomlinson, E. P. Sandefer, G. A. Digenis, K. H. Donn, and J. R. Powell. Effect of sodium acid pyrophosphate on ranitidine bioavailability and gastrointestinal transit time. Pharm. Res. 10:1027–1030 (1993).

    Google Scholar 

  30. G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413–420 (1995).

    Google Scholar 

  31. R. M. Mhatre, H. Malinowski, H. Nguyen, M. C. Meyer, A. B. Straughn, L. Lesko, and R. L. Williams. The effects of cross linking gelatin capsules on the bioequivalence of acetaminophen. Pharm. Res. 14:S-251 (1997).

    Google Scholar 

  32. J. Brown, N. Madit, E. T. Cole, I. R. Wilding, and D. Cade. The effect of cross-linking on the in vivo disintegration of hard gelatin capsules. Pharm. Res. 15:1026–1030 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Digenis, G.A., Sandefer, E.P., Page, R.C. et al. Bioequivalence Study of Stressed and Nonstressed Hard Gelatin Capsules Using Amoxicillin as a Drug Marker and Gamma Scintigraphy to Confirm Time and GI Location of In Vivo Capsule Rupture. Pharm Res 17, 572–582 (2000). https://doi.org/10.1023/A:1007568900147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007568900147

Navigation