Skip to main content
Log in

The Scattering Matrix and its Meromorphic Continuation in the Stark Effect Case

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Quantum scattering in the presence of a constant electric field (‘Stark effect’) is considered. It is shown that the scattering matrix has a meromorphic continuation in the energy variable to the entire complex plane as an operator on L2(R n-1). The allowed potentials V form a general subclass of potentials that are short-range relative to the free Stark Hamiltonian: Roughly, the potential vanishes at infinity, and admits a decomposition \(V = V_\mathcal{A} + V_e\) , where \(V_\mathcal{A}\) is analytic in a sector with \(V_\mathcal{A} (x) = O(\left\langle {x_{} } \right\rangle ^{ - 1/2 - \varepsilon } )\), and \(V_e (x) = O({\text{e}}^{\mu x_1 } )\), for x1<0 and some μ μ>0. These potentials include the Coulomb potential. The wave operators used to define the scattering matrix are the two Hilbert space wave operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S. and Klein, M.: Analyticity properties in scattering and spectral theory for Schrödinger operators with long-range radial potentials, Duke Math. J. 68(2) (1992), 337–399.

    Google Scholar 

  2. Balslev, E.: Analytic scattering theory for two-body Schrödinger operators, J. Funct. Anal. 29 (1978), 375–396.

    Google Scholar 

  3. Bommier, A.: Prolongement méromorphe de la matrice de diffusion pour les problèmes à N corps à longue portée, Mém. Soc. Math. France (N.S.) 59 (1994).

  4. Gérard, C. and Martinez A.: Prolongement méromorphe de la matrice de scattering pour les problèmes à deux corps à longue portée, Ann. Inst. Henri Poincaré 51 (1989), 81–110.

    Google Scholar 

  5. Graffi, S. and Grecchi, V.: Resonances in the Stark effect and perturbation theory, Comm. Math. Phys. 62 (1978), 83–96.

    Google Scholar 

  6. Hagedorn, G.: A link between scattering resonances and dilation analytic resonances in few body quantum mechanics, Comm. Math. Phys. 65 (1979), 181–188.

    Google Scholar 

  7. Herbst, Ira W.: Dilation analyticity in constant electric field. I. The two body problem, Comm. Math. Phys. 64(3) (1979), 279–298.

    Google Scholar 

  8. Hislop, P. D. and Sigal, I.M.: Introduction to Spectral Theory, with Applications to Schrödinger Operators, Appl. Math. Sci. 113, Springer, Berlin, 1996.

    Google Scholar 

  9. Hunziker, W.: Distortion analyticity and molecular resonance curves, Ann. Inst. H. Poincaré A, 45(4) (1986) 339–358.

    Google Scholar 

  10. Isozaki, H.: On the generalized Fourier transforms associated with Schrödinger operators with long range perturbations, J. Reine Angew. Math 337 (1982), 18–49.

    Google Scholar 

  11. Isozaki, H. and Kitada, H.: Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sect. IA 32 (1985), 77–104.

    Google Scholar 

  12. Isozaki, H. and Kitada, H.: Scattering matrices for two-body Schrödinger operators, Sci. Papers Coll. Arts Sci., Univ. Tokyo 35 (1985), 81–107.

    Google Scholar 

  13. Kitada, H.: A relation between the modified wave operators W ±J and W ±D , Sci. Papers Coll. Arts Sci., Univ. Tokyo. 36 (1987), 91–105.

    Google Scholar 

  14. Kitada, H. and Yajima, K.: A scattering theory for time-dependent long-range potentials, Duke Math J. 49 (1982), 341–376.

    Google Scholar 

  15. Kitada, H. and Yajima, K.: Remarks on our paper ‘A scattering theory for time-dependent long-range potentials’, Duke Math J. 50 (1983), 1005–1016.

    Google Scholar 

  16. Kuroda, S. T.: Scattering theory for differential operators, I, operator theory, J. Math. Soc. Japan 25(1) (1973), 75–104.

    Google Scholar 

  17. Kvitsinsky, A. A. and Kostrykin, V. V.: S-matrix and Jost functions of Schrödinger Hamiltonian related to the Stark effect, J. Math. Phys. 31(11) (1990), 2731–2736.

    Google Scholar 

  18. Reed, M. and Simon, B.: Methods of Modern Mathematical Physics. III Scattering Theory, Academic Press, New York, 1979.

    Google Scholar 

  19. Sigal, I. M.: Analytic properties of the scattering matrix of many particle systems, Integral Equations Operator Theory 9 (1986), 134–153.

    Google Scholar 

  20. White, D. A. W.: Modified wave operators and the Stark effect, Duke Math J. 68 (1992), 83–100.

    Google Scholar 

  21. White, D. A. W.: Meromorphic continuation of the scattering matrix in the Stark effect case, in preparation.

  22. Yajima, K.: Spectral and scattering theory for Schrödinger operators with Stark effect, II, J. Fac. Sci. Univ. Tokyo, Sec IA 28 (1981), 1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hislop, P.D., White, D.A.W. The Scattering Matrix and its Meromorphic Continuation in the Stark Effect Case. Letters in Mathematical Physics 48, 201–209 (1999). https://doi.org/10.1023/A:1007565014305

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007565014305

Navigation