Skip to main content
Log in

Bayesian Inference of Spatial Covariance Parameters

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

This paper shows the application of the Bayesian inference approach in estimating spatial covariance parameters. This methodology is particularly valuable where the number of experimental data is small, as occurs frequently in modeling reservoirs in petroleum engineering or when dealing with hydrodynamic variables in groundwater hydrology. There are two main advantages of Bayesian estimation: firstly that the complete distribution of the parameters is estimated and, from this distribution, it is a straightforward procedure to obtain point estimates, confidence regions, and interval estimates; secondly, all the prior information about the parameters (information available before the data are collected) is included in the inference procedure through their prior distribution. The results obtained from simulation studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Berger, J. O., 1985, Statistical decision theory and Bayesian analysis: Springer series in statistics, 2nd Ed., Springer-Verlag, Inc., New York, 617 p.

    Google Scholar 

  • Box, G. E., and Tiao, G. C., 1973, Bayesian inference in statistical analysis: Addison-Wesley, Reading, Massachusetts, 588 p.

    Google Scholar 

  • Christakos, G., 1990, A Bayesian maximum-entropy view to the spatial estimation problem: Math. Geology, v. 22, no. 7, p. 763–776.

    Google Scholar 

  • Christakos, G., 1992, Random field models in earth sciences: Academic Press, San Diego, CA, 474 p.

    Google Scholar 

  • Dietrich, C. R., and Osborne, M. R., 1991, Estimation of the covariance parameters in kriging via the restricted maximum likelihood: Math. Geology, v. 23, no. 1, p. 119–135.

    Google Scholar 

  • Dimitrakopoulos, R., ed., 1994, Geostatistics for the next century: Kluwer Academic Publ., Dordrecht, 497 p.

  • Gelhar, L. W., 1993, Stochastic groundwater hydrology: Prentice Hall, Englewood Cliffs, New Jersey, 390 p.

    Google Scholar 

  • Handcock, M. S., and Stein, M. L., 1993, A Bayesian analysis of kriging: Technometrics, v. 35, no. 4, p. 403–410.

    Google Scholar 

  • Handcock, M. S., and Wallis, J. R., 1994, An approach to statistical spatio-temporal modelling of meteorological fields (with discussion): Jour. Am. Stat. Assoc., v. 89, no. 426, p. 368–390.

    Google Scholar 

  • Hoeksema, R. J., and Kitanidis, P. K., 1985, Analysis of the spatial structure of properties of selected aquifers: Water Resources Res., v. 21, no. 4, p. 563–572.

    Google Scholar 

  • Journel, A., and Huijbregts, Ch., 1978, Mining geostatistics: Academic Press, New York, 600 p.

    Google Scholar 

  • Kitanidis, P. K., 1983, Statistical estimation of polynomial generalized covariance functions and hydrologic applications: Water Resources Res., v. 19, no. 2, p. 909–921.

    Google Scholar 

  • Kitanidis, P. K., 1986, Parameter uncertainty in estimation of spatial functions: Bayesian analysis: Water Resources Res., v. 22, no. 4, p. 499–507.

    Google Scholar 

  • Kitanidis, P. K., 1987, Parametric estimation of covariances of regionalized variables: Water Resources Bull., v. 23, no. 4, p. 671–680.

    Google Scholar 

  • Kitanidis, P. K., 1991, Orthogonal residuals in geostatistics: Model criticism and parameter estimation: Math. Geology, v. 23, no. 5, p. 741–758.

    Google Scholar 

  • Kraggerud, A. G., 1996, Parametric variogram estimation in a Bayesian framework: unpubl. Masters thesis, University of Trondheim, Norway, 90 p.

    Google Scholar 

  • Lebel, T., and Bastin, G., 1985, Variogram identification by mean squared interpolation error method with application to hydrologic fields: J. Hydrology, v. 77, p. 31–56.

    Google Scholar 

  • Marshall, R. J., and Mardia, K. V., 1985, Minimum norm quadratic estimation of components of spatial covariances: Math. Geology, v. 17, no. 5, p. 637–639.

    Google Scholar 

  • Mostad, P. F., Egeland, T., Hjort, N. L., Kraggerud, A. G. and Biver, P. Y., 1997, Variogram estimation in a Bayesian framework, in Baafi, E. Y., and Schofield, N. A., eds., Geostatistics Wollongong' 96, Vol. 1, proc. 5th Inter. Geostat. Congr., Wollongong, Australia, 1996: Kluwer Academic Publ. Dordrecht, p. 223–233.

    Google Scholar 

  • O'Hagan, A., 1994, Bayesian inference: Edward Arnold, Cambridge, 330 p.

    Google Scholar 

  • Omre, H., 1987, Bayesian kriging: Merging observations and qualified guesses in kriging: Math. Geology, v. 19, no. 1, p. 25–39.

    Google Scholar 

  • Pardo-Igúzquiza, E., 1997, MLREML: A computer program for the inference of spatial covariance parameters by maximum likelihood and restricted maximum likelihood: Computers & Geosciences, v. 23, no. 2, p. 153–162.

    Google Scholar 

  • Pardo-Igúzquiza, E., 1998, Maximum likelihood estimation of spatial covariance parameters: Math. Geology, v. 30, no. 1, p. 95–108.

    Google Scholar 

  • Pardo-Igúzquiza, E., and Dowd, P. A., 1998, The second-order stationary universal kriging model revisited: Math. Geology, v. 30, no. 4, p. 347–378.

    Google Scholar 

  • Webster, R., and Oliver, M. A., 1993, How large a sample is needed to estimate the regional variogram adequately?, in Soares, A., eds., Geostatistics Tróia 92, proc. 4th. Inter. Geostat. Congr.: Kluwer Academic Publ., Dordrecht, p. 155–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardo-Igúzquiza, E. Bayesian Inference of Spatial Covariance Parameters. Mathematical Geology 31, 47–65 (1999). https://doi.org/10.1023/A:1007541330206

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007541330206

Navigation