Skip to main content
Log in

A Review of Predation Impact by 0+ Fish on Zooplankton in Fresh and Brackish Waters of the Temperate Northern Hemisphere

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

To assess potential differences in predation impact on zooplankton communities by small (larva) and large 0+ juvenile fish, 18 studies were reviewed from fresh water and the brackish Baltic Sea of the northern hemisphere temperate region. These case studies were performed either in the field or in mesocosm experiments. Larva stocks were found to exert only minor impact on small zooplankton species such as rotifers, copepodids and small cladocerans. In contrast, stocks of 0+ juveniles were found to have the potential to depress populations of large cladocerans and copepods, especially during late summer and autumn. However, studies where both 0+ juvenile fish consumption and zooplankton dynamics and production were exactly quantified are still very rare, and therefore final evaluation of this interaction cannot be made. In addition, papers were summarized that describe differences in morphological and physiological performance between larva and 0+ juvenile fish. The greater impact of 0+ juvenile fish on large zooplankton may be explained by their larger mouth gape and by their better developed abilities to detect and consume their prey items. However, this partly is lessened by the lower energy requirements of juvenile fish compared with identical biomasses of fish larvae, although larva bioenergetics remains only fragmentarily understood. Consequently, selective predation by fish larvae on particular small zooplankton prey may be more important than has been detected so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Applegate, R.L. & J.W. Mullan. 1967. Food of young largemouth bass, Micropterus salmoides, in a new and old reservoir. Trans. Amer. Fish. Soc. 96: 74–77.

    Google Scholar 

  • Arrhenius, F. & S. Hansson. 1993. Food consumption of larval, young and adult herring and sprat in the Baltic Sea. Mar. Ecol. Progr. Ser. 96: 125–137.

    Google Scholar 

  • Arrhenius, F. & S. Hansson. 1994a. In situ food consumption by young-of-the-year Baltic Sea herring Clupea harengus: a test of predictions from a bioenergetic model. Mar. Ecol. Progr. Ser. 110: 145–149.

    Google Scholar 

  • Arrhenius, F. & S. Hansson. 1994b. Erratum. Mar. Ecol. Progr. Ser. 114: 314.

    Google Scholar 

  • Arts, M.T. & D.O. Evans. 1987. Precision micrometer measurement of mouth gape of larval fish. Can. J. Fish. Aquat. Sci. 44: 1786–1791.

    Google Scholar 

  • Balon, E.K. 1975. Terminology of intervals in fish development. J. Fish. Res. Board Can. 32: 1663–1670.

    Google Scholar 

  • Batty, R.S. 1984. Development of swimming movements and musculature of larval herring (Clupea harengus). J. Exp. Biol. 110: 217–229.

    Google Scholar 

  • Blaxter, J.H.S. 1986. Development of sense organs and behaviour of teleost larvae with special reference to feeding and predator avoidance. Trans. Amer. Fish. Soc. 115: 98–114.

    Google Scholar 

  • Boersma, M., O.F.R. van Tongeren & W.M. Mooij. 1996. Seasonal patterns in the mortality of Daphnia species in a shallow lake. Can. J. Fish. Aquat. Sci. 53: 18–28.

    Google Scholar 

  • Bremigan, M.T. & R.A. Stein. 1994. Gape-dependent larval foraging and zooplankton size: implications for fish recruitment across systems. Can. J. Fish. Aquat. Sci. 51: 913–922.

    Google Scholar 

  • Brooks, J.L. & S.I. Dodson. 1965. Predation, body size, and the composition of the plankton. Science 150: 28–35.

    Google Scholar 

  • Copp, G.H. & V. Kováč. 1996. When do fish with indirect development become juveniles? Can. J. Fish. Aquat. Sci. 53: 746–752.

    Google Scholar 

  • Cryer, M., G. Peirson & C.R. Townsend. 1986. Reciprocal interactions between roach, Rutilus rutilus, and zooplankton in a small lake: prey dynamics and fish growth and recruitment. Limnol. Oceanogr. 31: 1022–1038.

    Google Scholar 

  • Cushing, D.H. 1983. Are fish larvae too dilute to affect the density of their food organisms? J. Plankt. Res. 5: 847–854.

    Google Scholar 

  • Dabrowski, K. 1984. The feeding of fish larvae: present, a state of the art and perspective. Repr. Nutr. Develop. 20: 807–833.

    Google Scholar 

  • DeMott, W.R. 1989. The role of competition in zooplankton succession. pp. 195–252. In: U. Sommer (ed.) Plankton Ecology: Succession in Plankton Communities, Springer Verlag, Berlin.

    Google Scholar 

  • Dettmers, J.M. & R.A. Stein. 1992. Food consumption by larval gizzard shad: zooplankton effects and implications for reservoir communities. Trans. Amer. Fish. Soc. 121: 494–507.

    Google Scholar 

  • DeVries, D.R. & R.A. Stein. 1992. Complex interactions between fish and zooplankton: quantifying the role of an open-water planktivore. Can. J. Fish. Aquat. Sci. 49: 1216–1227.

    Google Scholar 

  • El-Fiky, N., S. Hinterleitner & W. Wieser. 1987. Differentiation of swimming muscles and gills, and development of anaerobic power in the larvae of cyprinid fish (Pisces, Teleostei). Zoomorphology 107: 126–132.

    Google Scholar 

  • Forstner, H., S. Hinterleitner, K. Mähr & W. Wieser. 1983. Towards a better definition of “metamorphosis” in Coregonus sp.: biochemical, histological, and physiological data. Can. J. Fish. Aquat. Sci. 40: 1224–1232.

    Google Scholar 

  • Furnass, T.I. 1979. Laboratory experiments on prey selection by perch fry (Perca fluviatilis). Freshwat. Biol. 9: 33–43.

    Google Scholar 

  • Ghan, D. & W.G. Sprules. 1993. Diet, prey selection, and growth of larval and juvenile burbot Lota lota (L.). J. Fish Biol. 39: 47–64.

    Google Scholar 

  • Gliwicz, Z.M. 1994. Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia 272: 201–210.

    Google Scholar 

  • Gliwicz, Z.M. & J. Pijanowska. 1989. The role of predation in zooplankton succession. pp. 253–295. In: U. Sommer (ed.) Plankton Ecology: Succession in Plankton Communities, Springer Verlag, Berlin.

    Google Scholar 

  • Guma'a, S.A. 1978. The food and feeding habits of young perch, Perca fluviatilis, in Windermere. Freshwat. Biol. 8: 177–187.

    Google Scholar 

  • Hambright, D. 1994. Morphological constraints in the piscivoreplanktivore interaction: implications for the trophic cascade hypothesis. Limnol. Oceanogr. 39: 897–912.

    Google Scholar 

  • Hammer, C. 1985. Feeding behaviour of roach (Rutilus rutilus) larvae and fry of perch (Perca fluviatilis) in Lake Lankau. Arch. Hydrobiol. 103: 61–74.

    Google Scholar 

  • Hansen, M.J. & D.H. Wahl. 1981. Selection of small Daphnia pulex by yellow perch fry in Oneida lake, New York. Trans. Amer. Fish. Soc. 110: 64–71.

    Google Scholar 

  • Hartmann, J. 1983. Two feeding strategies of young fishes. Arch. Hydrobiol. 96: 496–509.

    Google Scholar 

  • Hartmann, J. 1986. Interspecific predictors of selected prey of young fishes. Arch. Hydrobiol. Beih. Ergebn. Limnol. 22: 373–386.

    Google Scholar 

  • Hofer, R. & A. Nasir-Uddin. 1985. Digestive processes during the development of the roach, Rutilus rutilus (L.). Hydrobiologia 26: 683–689.

    Google Scholar 

  • Hofer, R. & O. Bürkle. 1986. Daily food consumption, gut passage rate and protein utilization in whitefish larvae (Coregonus sp.). Arch. Hydrobiol. Beih. Ergebn. Limnol. 22: 189–196.

    Google Scholar 

  • Hülsmann, S. & T. Mehner. 1997. Predation by underyearling perch (Perca fluviatilis) on a Daphnia galeata population in a short-term enclosure experiment. Freshwat. Biol. 38: 209–219.

    Google Scholar 

  • Kairesalo, T. & T. Seppälä. 1987. Phosphorus flux through a littoral ecosystem: the importance of cladoceran zooplankton and young fish. Int. Revue ges. Hydrobiol. 72: 385–403.

    Google Scholar 

  • Karjalainen, J., D. Miserque & H. Huuskonen. 1997. The estimation of food consumption in larval and juvenile fish: experimental evaluation of bioenergetics model. J. Fish Biol. 51(Suppl. A): 39–51.

    Google Scholar 

  • Keast, A. 1980. Food and feeding relationships of young fish in the first weeks after the beginning of exogenous feeding in Lake Opinicon, Ontario. Env. Biol. Fish. 5: 305–314.

    Google Scholar 

  • Kitchell, J.F., D.J. Stewart & D. Weininger. 1977. Applications of a bioenergetics model to yellow perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). J. Fish. Res. Board Can. 34: 1922–1935.

    Google Scholar 

  • Koblitskaya, A.A. 1981. Identification key of yearlings of fish in the Volga delta. Izd. Nauka, Moskva. 208 pp. (in Russian).

  • Kurmayer, R. & J. Wanzenböck. 1996. Top-down effects of underyearling fish on a phytoplankton community. Freshwat. Biol. 36: 599–609.

    Google Scholar 

  • Lampert, W., W. Fleckner, H. Rai & B.E. Taylor. 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnol. Oceanogr. 31: 478–490.

    Google Scholar 

  • Larsson, P., G. Johnsen & A.L. Steigen. 1985. An experimental study of the summer decline in a Daphnia population. Verh. internat. Verein. Limnol. 22: 3131–3136.

    Google Scholar 

  • Lazzaro, X. 1987. A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146: 97–167.

    Google Scholar 

  • Lehtovaara, A. & J. Sarvala. 1984. Seasonal dynamics of total biomass and species composition of zooplankton in the littoral of an oligotrophic lake. Verh. internat. Verein. Limnol. 22: 805–810.

    Google Scholar 

  • Luecke, C., M.J. Vanni, J.J. Magnuson, J.F. Kitchell & P.T. Jacobson. 1990. Seasonal regulation of Daphnia populations by planktivorous fish: implications for the spring clear-water phase. Limnol. Oceanogr. 35: 1718–1733.

    Google Scholar 

  • Madon, S.P. & D.A. Culver. 1993. Bioenergetics model for larval and juvenile walleyes: an in situ approach with experimental ponds. Trans. Amer. Fish. Soc. 122: 797–813.

    Google Scholar 

  • Mark, W., W. Wieser & C. Hohenauer. 1989. Interactions between developmental processes, growth, and food selection in the larvae and juveniles of Rutilus rutilus (L.) (Cyprinidae). Oecologia 78: 330–337.

    Google Scholar 

  • Marmulla, G. & R. Rösch. 1990. Maximum daily ration of juvenile fish fed on living natural zooplankton. J. Fish Biol. 36: 789–801.

    Google Scholar 

  • Mathias, J. & S. Li. 1982. Feeding habits of walleye larvae and juveniles: comparative laboratory and field studies. Trans. Amer. Fish. Soc. 111: 722–735.

    Google Scholar 

  • McQueen, D.J. & J.R. Post. 1988. Cascading trophic interactions: uncoupling at the zooplankton-phytoplankton link. Hydrobiologia 159: 277–296.

    Google Scholar 

  • Mehner, T. 1996. Predation impact of age-0 fish on a copepod population in a Baltic Sea inlet as estimated by two bioenergetics models. J. Plankt. Res. 18: 1323–1340.

    Google Scholar 

  • Mehner, T. & R. Heerkloss. 1994. Direct estimation of food consumption of juvenile fish in a shallow inlet of the Southern Baltic. Int. Revue ges. Hydrobiol. 79: 295–304.

    Google Scholar 

  • Mehner, T. & I.J. Winfield (ed.). 1997. Trophic interactions of age-0 fish and zooplankton in temperate waters. Proceedings of a Plankton Ecology Group (PEG) workshop, Dresden, February 1996. Arch. Hydrobiol. Beih. Ergebn. Limnol. 49: 1–152.

  • Mehner, T., H. Schultz, D. Bauer, R. Herbst, H. Voigt & J. Benndorf. 1996. Intraguild predation and cannibalism in age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca): interactions with zooplankton succession, prey fish availability and temperature. Ann. Zool. Fennici 33: 353–361.

    Google Scholar 

  • Mehner, T., M. Plewa, S. Hülsmann, H. Voigt & J. Benndorf. 1997. Age-0 fish predation on daphnids — spatial and temporal variability in the top-down manipulated Bautzen reservoir, Germany. Arch. Hydrobiol. Beih. Ergebn. Limnol. 49: 13–25.

    Google Scholar 

  • Mehner, T., M. Plewa, S. Hülsmann & S. Worischka. 1998a. Gapesize dependent feeding of age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca) on Daphnia galeata. Arch. Hydrobiol. 142: 191–207.

    Google Scholar 

  • Mehner, T., S. Hülsmann, S. Worischka, M. Plewa & J. Benndorf. 1998b. Is the midsummer decline of Daphnia really induced by age-0 fish predation? Comparison of fish consumption and Daphnia mortality and life history parameters in a biomanipulated reservoir. J. Plankt. Res. (in press).

  • Miller, T.J., L.B. Crowder, J.A. Rice & F.P. Binkowski. 1992. Body size and the ontogeny of the functional response in fishes. Can. J. Fish. Aquat. Sci. 49: 805–812.

    Google Scholar 

  • Mills, E.L. & J.L. Forney. 1983. Impact on Daphnia pulex of predation by young yellow perch in Oneida Lake, New York. Trans. Amer. Fish. Soc. 112: 151–161.

    Google Scholar 

  • Mills, E.L., J.L. Confer & R.C. Ready. 1984. Prey selection by young yellow perch: the influence of capture success, visual acuity, and prey choice. Trans. Amer. Fish. Soc. 113: 579–587.

    Google Scholar 

  • Mills, E.L., J.L. Confer & D.W. Kretchmer. 1986. Zooplankton selection by young yellow perch: the influence of light, prey density, and predator size. Trans. Amer. Fish. Soc. 115: 716–725.

    Google Scholar 

  • Mills, E.L., J.L. Forney & K.J. Wagner. 1987. Fish predation and its cascading effect on the Oneida Lake food chain. pp. 118–131. In: W.C. Kerfoot & A. Sih (ed.) Predation — Direct and Indirect Impacts on Aquatic Communities, University Press, Hanover.

    Google Scholar 

  • Murtaugh, P.A. 1985. Vertical distribution of zooplankton and population dynamics of Daphnia in a meromictic lake. Hydrobiologia 123: 47–57.

    Google Scholar 

  • Noble, R.L. 1975. Growth of young yellow perch (Perca flavescens) in relation to zooplankton populations. Trans. Amer. Fish. Soc. 104: 731–741.

    Google Scholar 

  • Post, D.M. & J.F. Kitchell. 1997. Trophic ontogeny and life history effects on interactions between age-0 fishes and zooplankton. Arch. Hydrobiol. Beih. Ergebn. Limnol. 49: 1–12.

    Google Scholar 

  • Post, J.R. & D.J. McQueen. 1987. The impact of planktivorous fish on the structure of a plankton community. Freshwat. Biol. 17: 79–89.

    Google Scholar 

  • Post, J.R. & D.O. Evans. 1989. Size-dependent overwinter mortality of young-of-the-year yellow perch (Perca flavescens): laboratory, in situ enclosure, and field experiments. Can. J. Fish. Aquat. Sci. 46: 1958–1968.

    Google Scholar 

  • Post, J.R. & J.A. Lee. 1996. Metabolic ontogeny of teleost fishes. Can. J. Fish. Aquat. Sci 53: 910–923.

    Google Scholar 

  • Post, J.R., L.G. Rudstam, D.M. Schael & C. Luecke. 1992. Pelagic planktivory by larval fishes in Lake Mendota. pp. 303–317. In: J.F. Kitchell (ed.) Food Web Management — a Case Study of Lake Mendota, Springer Verlag, New York.

    Google Scholar 

  • Qin, J. & D.A. Culver. 1995. Effect of young-of-the-year walleye (Percidae: Stizostedion vitreum) on plankton dynamics and water quality in ponds. Hydrobiologia 297: 217–227.

    Google Scholar 

  • Rice, J.A., L.B. Crowder & F.P. Binkowski. 1987. Evaluating potential sources of mortality for larval bloater (Coregonus hoyi): starvation and vulnerability to predation. Can. J. Fish. Aquat. Sci. 44: 467–472.

    Google Scholar 

  • Rogowski, U. & F.W. Tesch. 1960. Erste Nahrung freßfähig gewordener Fischbrut. Zeitschr. f. Fisch. N.F. 9: 735–747.

    Google Scholar 

  • Rombough, P.J. 1988. Respiratory gas exchange and aerobic metabolism. pp. 59–161. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology 9, The Physiology of Developing Fish, A: Eggs and Larvae, Academic Press, San Diego.

    Google Scholar 

  • Rudstam, L., S. Hansson, S. Johansson & U. Larsson. 1992. Dynamics of planktivory in a coastal area of the Northern Baltic Sea. Mar. Ecol. Progr. Ser. 80: 159–173.

    Google Scholar 

  • Schael, D.M., L.G. Rudstam & J.R. Post. 1991. Gape limitation and prey selection in larval yellow perch (Perca flavescens), freshwater drum (Aplodinotus grunniens), and black crappie (Pomoxis nigromaculatus). Can. J. Fish. Aquat. Sci. 48: 1919–1925.

    Google Scholar 

  • Sommer, U., Z.M. Gliwicz, W. Lampert & A. Duncan. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • Thiel, R. 1996. The impact of fish predation on the zooplankton community in a southern Baltic bay. Limnologica (Berlin) 26: 123–137.

    Google Scholar 

  • Thiel, R., T. Mehner, B. Köpcke & R. Kafemann. 1996. Diet niche relationships among early life stages of fish in German estuaries. Mar. Freshwat. Res. 47: 123–136.

    Google Scholar 

  • Threlkeld, S.T. 1985. Resource variation and the initiation of midsummer declines of cladoceran populations. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 333–340.

    Google Scholar 

  • Treasurer, J.W. 1992. The predator-prey relationship of perch, Perca fluviatilis, larvae and zooplankton in two Scottish lochs. Env. Biol. Fish. 35: 63–74.

    Google Scholar 

  • Troschel, H.J. & R. Rösch. 1991. Daily ration of juvenile Coregonus lavaretus (L.) fed on living zooplankton. J. Fish Biol. 38: 95–104.

    Google Scholar 

  • Vijverberg, J., M. Boersma, W.L.T. VanDensen, W. Hoogenboezem, E.H.R.R. Lammens & W.M. Mooij. 1990. Seasonal variation in the interactions between piscivorous fish, planktivorous fish and zooplankton in a shallow eutrophic lake. Hydrobiologia 207: 279–286.

    Google Scholar 

  • Vinberg, G.G. 1956. Rate of metabolism and food requirements of fish. Isd. Belrusuniversiteta, Minsk. 253 pp. (in Russian).

  • Wahl, C.M., E.L. Mills, W.N. McFarland & J.S. DeGisi. 1993. Ontogenetic changes in prey selection and visual acuity of the yellow perch, Perca flavescens. Can. J. Fish. Aquat. Sci. 50: 743–749.

    Google Scholar 

  • Wanzenböck, J. 1992. Ontogeny of prey attack behaviour in larvae and juveniles of three European cyprinids. Env. Biol. Fish. 33: 23–32.

    Google Scholar 

  • Wanzenböck, J. 1995. Changing handling times during feeding and consequences for prey size selection of 0+ zooplanktivorous fish. Oecologia 104: 372–378.

    Google Scholar 

  • Wanzenböck, J. & F. Schiemer. 1989. Prey detection in cyprinids during early development. Can. J. Fish. Aquat. Sci. 46: 995–1001.

    Google Scholar 

  • Wanzenböck, J., M. Zaunreiter, C.M. Wahl & D.L.G. Noakes. 1996. Comparison of behavioural and morphological measures of visual resolution during ontogeny of roach (Rutilus rutilus) and yellow perch (Perca flavescens). Can. J. Fish. Aquat. Sci. 53: 1506–1512.

    Google Scholar 

  • Wanzenböck, J., M.C. Whiteside & T. Mehner. 1997. Defining a desirable sampling strategy for studies of age-0 fish — zooplankton interactions — a preliminary approach. Arch. Hydrobiol. Beih. Ergebn. Limnol. 49: 137–138.

    Google Scholar 

  • Welker, M.T., C.L. Pierce & D.H. Wahl. 1994. Growth and survival of larval fishes: roles of competition and zooplankton abundance. Trans. Amer. Fish. Soc. 123: 703–717.

    Google Scholar 

  • Werner, E.E. & D.J. Hall. 1974. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55: 1042–1052.

    Google Scholar 

  • Werner, E.E. & J.F. Gilliam. 1984. The ontogenetic niche and species interactions in size-structured populations. Ann. Rev. Ecol. Syst. 15: 393–425.

    Google Scholar 

  • Werner, M.-G., T. Mehner & H. Schultz. 1996. Which factors influence the diet composition of age-0 ruffe (Gymnocephalus cernuus [L.]) in the Bautzen reservoir (Saxony, Germany)? Limnologica 26: 145–151.

    Google Scholar 

  • Werner, R.G., B.V. Jockheere, M.D. Clapsadl & J.M. Farrell. 1996. A bioenergetic exploration of piscivory and planktivory during the early life history of two species of freshwater fishes. Mar. Freshwat. Res. 47: 113–121.

    Google Scholar 

  • Whiteside, M.C. 1988. 0+ fish as major factors affecting abundance patterns of littoral zooplankton. Verh. internat. Verein. Limnol. 23: 1710–1714.

    Google Scholar 

  • Whiteside, M.C., C.M. Swindoll & W.L. Doolittle. 1985. Factors affecting the early life history of yellowperch, Perca flavescens. Env. Biol. Fish. 12: 47–56.

    Google Scholar 

  • Wieser, W. 1991. Limitations of energy acquisition and energy use in small poikilotherms: evolutionary implications. Funct. Ecol. 5: 234–240.

    Google Scholar 

  • Winfield, I.J. & C.R. Townsend. 1983. The cost of copepod reproduction: increased susceptibility to fish predation. Oecologia 60: 406–411.

    Google Scholar 

  • Wong, B. & F.J. Ward. 1972. Size selection of Daphnia pulicaria by yellowperch (Perca flavescens) fry in West Blue Lake, Manitoba. J. Fish. Res. Board Can. 29: 1761–1764.

    Google Scholar 

  • Worischka, S. & T. Mehner. 1998. Comparison of field-based and indirect estimates of daily food consumption in larval perch and zander. J. Fish Biol. 53: 1050–1059.

    Google Scholar 

  • Wu, L. & D.A. Culver. 1994. Daphnia population dynamics in western Lake Erie: regulation by food limitation and yellow perch predation. J. Great Lakes Res. 20: 537–545.

    Google Scholar 

  • Zalewski, M., B. Brewinska-Zaras, P. Frankiewicz & S. Kalinowski. 1990. The potential for biomanipulation using fry communities in a lowland reservoir: concordance between water quality and optimal recruitment. Hydrobiologia 200/201: 549–556.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehner, T., Thiel, R. A Review of Predation Impact by 0+ Fish on Zooplankton in Fresh and Brackish Waters of the Temperate Northern Hemisphere. Environmental Biology of Fishes 56, 169–181 (1999). https://doi.org/10.1023/A:1007532720226

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007532720226

Navigation