Skip to main content
Log in

Lessons from Quantum Field Theory: Hopf Algebras and Spacetime Geometries

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss the prominence of Hopf algebras in recent progress in Quantum Field Theory. In particular, we will consider the Hopf algebra of renormalization, whose antipode turned out to be the key to a conceptual understanding of the subtraction procedure. We shall then describe several occurrences of this, or closely related Hopf algebras, in other mathematical domains, such as foliations, Runge-Kutta methods, iterated integrals and multiple zeta values. We emphasize the unifying role which the Butcher group, discovered in the study of numerical integration of ordinary differential equations, plays in QFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogoliubov, N. N. and Shirkov, D.V.: Introduction to theTheory of Quantized Fields, 3rd edn, Wiley, New York, 1980; Hepp, K.: Proof of the Bogoliubov-Parasiuk theorem of renormalization, Comm. Math. Phys. 2 (1966), 301–326; Zimmermann, W.: Convergence of Bogoliubov's method of renormalization in momentum space, Comm. Math. Phys. 15 (1969), 208–234.

    Google Scholar 

  2. Bjorken, J.D. and Drell, S.D.: RelativisticQuantumFields, McGraw-Hill, Englewood Cliffs, 1965.

    Google Scholar 

  3. Broadhurst, D. J.: Massive 3-loop Feynman Diagrams reducible to SC* primitives of algebras at the sixth root of unity, to appear in Eur. Phys. J. C, hep-th/9803091.

  4. Broadhurst, D. J. and Kreimer, D.: Association ofmultiple zetavalues with positive knots via Feynman diagrams up to 9 loops, Phys. Lett. B 393 (1997) 403–412, hep-th/9609128.

    Google Scholar 

  5. Broadhurst, D. J. and Kreimer, D.: Renormalization automated by Hopf algebra, to appear in J. Symbolic. Comput., hep-th/9810087.

  6. Brouder, C.: Runge Kutta methods and renormalization, hep-th/9904014.

  7. Butcher, J. C.: An algebraic theory of integration methods, Math.Comp. 26 (1972), 79–106.

    Google Scholar 

  8. Cayley, A.: On the theory of the analytical forms called trees, Phil.Mag. XIII (1857), 172–176.

    Google Scholar 

  9. Chen, Kuo-Tsai, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), 831–879.

    Google Scholar 

  10. Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry, Comm. Math. Phys. 182 (1996), 155–176, hep-th/9603053.

    Google Scholar 

  11. Connes, A.: Noncommutative Geometry, Academic Press, San Diego, CA, 1994.

    Google Scholar 

  12. Connes, A., Douglas, M. and Schwarz, A.: Noncommutative geometry and matrix theory: compactification on tori, JHEP 9802:003 (1998), hep-th/9711162.

    Google Scholar 

  13. Connes, A. and Kreimer, D.: Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys. 199 (1998), 203–242, hep-th/9808042.

    Google Scholar 

  14. Connes, A. and Moscovici, H.: Hopf algebras, cyclic cohomology and the transverse index theorem, Comm. Math. Phys. 198 (1998), 199–246, math.DG/9806109.

    Google Scholar 

  15. Connes, A. and Moscovici, H.: Cyclic cohomology and Hopf algebras, Lett.Math. Phys. 48 (1999), 97–108 (this issue).

    Google Scholar 

  16. Epstein, H. and Glaser, V.: The role of locality in perturbation theory, Ann. Inst. H. Poincarŕ A 19 (1973), 211–295.

    Google Scholar 

  17. Fulton, W. and MacPherson, R.: A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), 183–225.

    Google Scholar 

  18. Goncharov, A.: Polylogarithms in arithmetic and geometry, Proc. ICM-94 (Zürich),Vol. 1,2, Birkhäuser, Basel, 1995, pp. 374–387.

    Google Scholar 

  19. Kontsevich, M.: Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999), 35–72.

    Google Scholar 

  20. Kreimer, D.: On the Hopf algebra structure of perturbative quantum field theories, Adv. Math. Phys. 2 (1998), 303–334, q-alg/9707029.

    Google Scholar 

  21. Kreimer, D.: On Overlapping Divergences, to appear in Comm.Math. Phys., hep-th/9810022.

  22. Kreimer, D.: Chen's iterated integral represents the operator product expansion, hep-th/9901099.

  23. Kreimer, D. and Delbourgo, R.: Using the Hopf algebra of QFT in calculations, hep-th/9903249.

  24. Wulkenhaar, R.: On the Connes-Moscovici Hopf algebra associated to the diffeomorphisms of a manifold, Preprint CPT Luminy April 1999. hep-th/9904009.

  25. Zagier, D.: Values of zeta functions and their applications, First European Congr.Math.,Vol. II, Birkhäuser, Boston, 1994, pp. 497–512.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connes, A., Kreimer, D. Lessons from Quantum Field Theory: Hopf Algebras and Spacetime Geometries. Letters in Mathematical Physics 48, 85–96 (1999). https://doi.org/10.1023/A:1007523409317

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007523409317

Navigation