Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quantitative Control of Migration: A Geostatistical Attempt

  • 40 Accesses

  • 4 Citations

Abstract

This paper is devoted to a geostatistical attempt at modeling migration errors when localizing a reflector in the ground. Starting with a probabilistic velocity model and choosing the simple geometrical optics background for the wave propagation in such media, we give the expression of the errors. This may be quantified provided the covariance of the velocity field is known. Variance of arrival times at constant offset is related to the covariance of the velocity field at hand. A practical application is given in the same paragraph. After that we give a typical schema for migration and uncertainty modeling: starting with seismic data, we make the weak seismic inversion. We then obtain the covariance of the velocity field that we use for simulating migration errors. The main issues of this methodology are discussed in the last paragraph.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. Al-Chalabi, M., 1974, An analysis of stacking, RMS, average, and interval velocities over a horizontally layered ground: Geophy. Prospect., v. 22, p. 458–475.

  2. Al-Chalabi, M., 1994, Seismic velocities—a critique: First Break, v. 12, p. 589–596.

  3. Claerbout, J. F., 1985, Imaging the earth's interior: Blackwell Scientific Publications, p. 181–218.

  4. Haas, A., and Jousselin, C., 1976, Geostatistics in the petroleum industry: NATO—ASI “Geostat 75,” Rome, Italy, p. 13–25.

  5. Iooss, B., 1998a, Caractérisation probabiliste en sismique réflexion: Les Caliers de Geóstatistique v. 6, p. 61–73, Ecole des Mines de Paris, France.

  6. Iooss, B., 1998b, Seismic reflection traveltimes in 2-D statistically anisotropic random media: Geophy. Jour. Int., v. 135, p. 999–1010.

  7. Iooss, B., Galli, A., and Touati, M., 1998, Velocity correlation function estimation from seismic reflection traveltimes: 68th SEG expanded abstract, p. 1724–1727, New Orleans, USA.

  8. Matheron, G., 1991, Géodésiques aléatoires: Compte-rendu des Journées de Géostatistique, Ecole des Mines de Paris, Fontainebleau, France, p. 1–18.

  9. Rytov, S. M., Kravtsov, Y. A., and Tatarskii, V. I., 1987, Wave propagation through random media (Vol. 4): Principles of Statistical Radiophysics, Springer-Verlag, p. 1–14.

  10. Samuelides, Y., and Mukerji, T., 1998, Velocity shift in heterogeneous media with anisotropic spatial correlation: Geophy. Jour. Int., v. 134, p. 778–786.

  11. Tanher, M. T., 1961, Velocity spectra—digital derivation and applications of velocity functions: Geophysics, v. 34, p. 859–881.

  12. Touati, M. 1996, Contribution géostatistique au traitement des données sismiques: Thése de l'Ecole des Mines de Paris.

  13. Touati, M., Galli, A., Ruffo, P., and Della Rossa, E., 1996, Migration uncertainties: a probabilistic approach: Geostatistics Wollongong' 96, Kluwer Academic Publishers, Dordrecht, v. 2, p. 719–730.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Touati, M., Iooss, B. & Galli, A. Quantitative Control of Migration: A Geostatistical Attempt. Mathematical Geology 31, 277–295 (1999). https://doi.org/10.1023/A:1007522220637

Download citation

  • seismic uncertainties
  • random media
  • traveltimes
  • velocity
  • inversion