Neurochemical Research

, Volume 25, Issue 3, pp 423–429 | Cite as

Interaction of Amyloid Beta-Protein with Anionic Phospholipids: Possible Involvement of Lys28 and C-Terminus Aliphatic Amino Acids

  • Abha Chauhan
  • Indrani Ray
  • Ved P. S. Chauhan
Article

Abstract

Fibrillar amyloid beta-protein (Aβ) is the major protein of amyloid plaques in the brains of patients with Alzheimer's disease (AD). The mechanism by which normally produced soluble Aβ gets fibrillized in AD is not clear. We studied the effect of neutral, zwitterionic, and anionic lipids on the fibrillization of Aβ 1-40. We report here that acidic phospholipids such as phosphatidic acid, phosphatidylserine, phosphatidylinositol (PI), PI 4-phosphate, PI 4,5-P2 and cardiolipin can increase the fibrillization of Aβ, while the neutral lipids (diacylglycerol, cholesterol, cerebrosides), zwitterionic lipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelin) and anionic lipids lacking phosphate groups (sulfatides, gangliosides) do not affect Aβ fibrillization. Aβ was found to increase the fluorescence of 1-acyl-2-[12-[ (7-nitro-2-1, 3-benzoxadiazol-4-yl) amino] dodecanoyl]-sn-glycero-3-phosphate (NBD-PA) in a concentration-dependent manner, while no change was observed with 1-acyl-2-[12-[(7-nitro-2-1, 3-benzoxadiazol-4-yl) amino] dodecanoyl]-sn-glycero-3-phosphoethanolamine (NBD-PE). Under similar conditions, other proteins such as apolipoprotein E, gelsolin and polyglutamic acid did not interact with NBD-PA. The order of interaction of amyloid β-peptides with NBD-PA was Aβ 1-43 = Aβ 1-42 = Aβ 17-42 > Aβ 1-40 = Aβ 17-40. Other Aβ peptides such as Aβ 1-11, Aβ 1-16, Aβ 1-28, Aβ 1-38, Aβ 12-28, Aβ 22-35, Aβ 25-35, and Aβ 31-35 did not increase the NBD-PA fluorescence. These results suggest that phosphate groups, fatty acids, and aliphatic amino acids at the C-terminus end of Aβ 1-40/Aβ 1-42 are essential for the interaction of Aβ with anionic phospholipids, while hydrophilic Aβ segment from 1-16 amino acids does not participate in this interaction. Since positively charged amino acids in Aβ are necessary for the interaction with negatively charged phosphate groups of phospholipids, it is suggested that Lys28 of Aβ may provide anchor for the phosphate groups of lipids, while aliphatic amino acids (Val-Val-Ile-Ala) at the C-terminus of Aβ interact with fatty acids of phospholipids.

Amyloid beta-protein Alzheimer's disease lipids phospholipids fibrillization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Wisniewski, H. M., Sinatra, R. S., Iqbal, K., and Grundke-Iqbal, I., 1981. Neurofibrillary and synaptic pathology in the aged brain, Vol. 1, pages 105–142, in Johnson, J. E. Jr. (ed.), Aging and Cell Structure, Plenum Publishing Corporation, New York.Google Scholar
  2. 2.
    Masters, C. L., Simms, G., Weinman, N. A. Multhaup, G., Mc-Donald, B. L., and Beyreuther, K. 1985. Amyloid plaque core protein in Alzheimer' disease and Down' Syndrome, Proc. Natl. Acad. Sci. USA. 82:4245–4249.Google Scholar
  3. 3.
    Miller, D. L., Papayannopoules, I. A., Styles, J., Bobin, S. A., Lin, Y. Y., Biemann, L. K., and Iqbal, K. 1993. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer' disease, Arch. Biochem. Biophys. 301:41–52.Google Scholar
  4. 4.
    Roher, A. E., Lowenson, J. D., Clarke, S., Wolkow, C., Wang, R., Cotter, R. J., Reardon, I. M., Zurcher-Neely, H. A., Heinreikson, R. L., Ball, M. J., and Greenberg, B. D. 1993. Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer' disease, J. Biol. Chem. 268:3072–3083.Google Scholar
  5. 5.
    Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., and Ihara, Y. 1994. Visualization of A??42 (43) and A??(40) in senile plaques with end-specific A??monoclonals: Evidence that an initially deposited species is A??42 (43), Neuron 13:45–53.Google Scholar
  6. 6.
    Hilbich, C., Kisters-Woike, B., Reed, J., Masters, C. L., and Beyreuther, K. 1991. Aggregation and secondary structure of synthetic amyloid beta A4 peptides of Alzheimer' disease, J. Mol. Biol. 218:149–163.Google Scholar
  7. 7.
    Lorenzo, A., and Yankner, B. A. 1994. ?-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red, Proc. Natl. Acad. Sci. U.S.A. 91:12243–12247.Google Scholar
  8. 8.
    Iversen, L. L., Mortishire-Smith, R. J., Pollack, S. J., and Shearman, M. S. 1995. The toxicity in vitro of ?-amyloid protein, Biochem. J. 311:1–16.Google Scholar
  9. 9.
    Jarrett, J. T., and Lansbury, P. T., Jr. 1993. Seeding “One-Dimensional Crystallization” of amyloid: A pathogenic mechanism in Alzheimer' disease and Scrapie, Cell 73:1055–1058.Google Scholar
  10. 10.
    Bush, A. I., Pettingell, W. H., Multhaup, G., Paradis, M., Vonsaltel, J., Gusella, J. F. Beyreuther, K., Masters, C. L., and Tenzi, R. E. 1994. Rapid induction of Alzheimer' A??amyloid formation by zinc, Science 265:1464–1467.Google Scholar
  11. 11.
    Mantyh, P. W., Ghilardi, J. R., Rogers, S., DeMaster, E., Allen, C. J., Stimson, E. R., and Maggio, J. E. 1993. Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of ?-amyloid peptide, J. Neurochem. 61:1171–1174.Google Scholar
  12. 12.
    Miatto, O., Gonzalez, G., Bounanno, F., and Growdon, J. H. 1986. In vitro 31P NMR spectroscopy detects altered phospholipid metabolism in Alzheimer' disease, Can. J. Neurosci. 13: 535–539.Google Scholar
  13. 13.
    Stokes, C. E., and Hawthorne, J. N. 1987. Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains, J. Neurochem. 48:1018–1021.Google Scholar
  14. 14.
    Pettegrew, J. W., Moossy, J., Withers, G., McKeag, D., and Panchalingam, K. 1988. 31P nuclear magnetic resonance study of the brain in Alzheimer' disease, J. Neuropathol. Exp. Neurol. 47:235–248.Google Scholar
  15. 15.
    Nitsch, R. M., Blusztajn, J. K., Pittas, A. G., Slack, B. E., Growdon, J. H., and Wurtman, R. J. 1992. Evidence for a membrane defect in Alzheimer' disease brain, Proc. Natl. Acad. Sci. USA 89:1671–1675.Google Scholar
  16. 16.
    Ginsberg, L., Rafique, S., Xuereb, J. H., Rapoport, S. I., and Gershfeld, N. L. 1995. Disease and anatomic specificity of ethanolamine plasmalogen deficiency of Alzheimer' disease brain, Brain Res. 698:223–226.Google Scholar
  17. 17.
    Wells, K., Farooqui, A. A., Liss, L., and Horrocks, L. A. 1995. Neural membrane phospholipids in Alzheimer' disease. Neurochem. Res. 20:1329–1333.Google Scholar
  18. 18.
    Farooqui, A. A., Rapoport, S. I., and Horrocks, L. A. 1997. Membrane phospholipid alterations in Alzheimer' disease: Deficiency of ethanolamine plasmalogen, Neurochem. Res. 22:523–527.Google Scholar
  19. 19.
    Guan, Z., Wang, Y., Cairns, N. J., Lantos, P. L., Dallner, G., and Sindelar, P. J. 1999. Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease, J. Neuropathol. Exp. Neurol. 58:740–747.Google Scholar
  20. 20.
    Chia, L. S., Thompson, J. E., and Moscarello, M. A. 1984. X-ray diffraction evidence for myelin disorder in brain from human with Alzheimer' disease, Biochim. Biophys. Acta 775:308–312.Google Scholar
  21. 21.
    Zubenko, G. S. 1986. Hippocampal membrane alteration in Alzheimer' disease, Brain Res. 385:115–121.Google Scholar
  22. 22.
    Dawson, R. M. C., and Eichberg, J. 1965. Diphosphoinositide and triphosphoinositide in animal tissues: extraction, estimation and changes post mortem. Biochem. J. 96:634–643.Google Scholar
  23. 23.
    Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C. G., and Simons, K. 1998. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons, Proc. Natl. Acad. Sci. USA 95:6460–6464.Google Scholar
  24. 24.
    Perichon, R., Moser, A. B., Wallace, W. C., Cunningham, S. C., Roth, G. S., and Moser, H. W. 1998. Peroxisomal disease cell lines with cellular plasmalogen deficiency have impaired muscarinic cholinergic signal transduction activity and amyloid precursor protein secretion, Biochem. Biophys. Res. Commun. 248:57–61.Google Scholar
  25. 25.
    McLaurin, J., Franklin, T., Chakrabarty, A., and Fraser, P. E. 1998. Phosphatidylinositol and inositol involvement in Alzheimer amyloid-beta fibril growth and arrest, J. Mol. Biol. 278:183–194.Google Scholar
  26. 26.
    Chauhan, A., Chauhan, V. P. S., Brockerhoff, H. and Wisniewski, H. M. Effect of amyloid beta-protein on membrane properties. Pages 431–439, in Corain, B., Iqbal, K. Nicolini, M., Winblad, B., Wisniewski, H., and Zatta, P. (eds.), Alzheimer' disease: Advances in Clinical and Basic Research, John Wiley & Sons, Inc., New York.Google Scholar
  27. 27.
    Muller, W. E., Eckert, G. P., Scheuer, K., Cairns, N. J., Maras, A., and Gattaz, W. F. 1998. Effects of beta-amyloid peptides on the fluidity of membranes from frontal and parietal lobes of human brain: High potencies of A??1-42 and A??1-43, Amyloid 5:10–15.Google Scholar
  28. 28.
    Chauhan, A., Chauhan, V. P. S., Singh, S. S., Brockerhoff, H., and Wisniewski, H. M. 1994. Amyloid ?-protein induces membrane fusion. Structure-function studies, Neurobiol. Aging 15:555.Google Scholar
  29. 29.
    Pillot, T., Goethals, M., Vanloo, B., Talussot, C., Brasseur, R., Vandekerckhove, J., Rosseneu, M., and Lins, L. 1996. Fusogenic properties of the C-terminal domain of the Alzheimer beta-amyloid peptide, J. Biol. Chem. 271:28757–28765.Google Scholar
  30. 30.
    Terzi, E., Holzemann, G., and Seelig, J. 1997. Interaction of Alzheimer beta-amyloid peptide (1-40) with lipid membranes, Biochemistry 36:14845–14852.Google Scholar
  31. 31.
    LeVine, III, H. 1993. Thioflavin T interaction with synthetic Alzheimer' disease ?-amyloid peptides: Detection of amyloid aggregation in solution, Protein Sci. 2:404–410.Google Scholar
  32. 32.
    Chauhan, A., Chauhan, V. P. S., Wegiel, J., and Wisniewski, H. M. 1996. Impact of normal and heat-inactivated serum on in vitro aggregation and fibrillization of synthetic amyloid betaprotein, Alzheimer' Res. 2:243–248.Google Scholar
  33. 33.
    Chauhan, V. P. S., and Brockerhoff, H. 1984. Ca (phosphatidate)2 can traverse liposomal bilayers, Life Sci. 35:1395–1399.Google Scholar
  34. 34.
    Halverson, K., Fraser, P. E., Kirschner, D. A., and Lansbury, P. T., 1990. Molecular determinants of amyloid deposition in Alzheimer' disease: conformational studies of synthetic ?-protein fragments, Biochemistry 29:2639–2644.Google Scholar
  35. 35.
    Lansbury, P. T., Costa, P. R., Griffiths, J. M., Simon, E. J., Auger, M., Halverosn, K. J., Kocisko, D. A., Hendsch, Z. S., Ashburn, T. T., Spencers, R. G. S., Tidor, B., and Griffin, R. G. 1995. Structural model for the ?-amyloid fibril based on interstrand alignment of an anti-parallel-sheet comprising a C-terminal peptide, Nature Struct. Biol. 2:990–997.Google Scholar
  36. 36.
    Lomakin, A., Chung, D. S., Benedek, G. B., Kirschner, D. A., and Teplow, D. B. 1996. Detection of nuclei, and quantitation of rate constants on the nucleation and growth of amyloid ?-protein fibrils, Proc. Natl. Acad. Sci. 93:1125–1129.Google Scholar
  37. 37.
    Jain, S. K. 1984. The accumulation of malonyldialdehyde, a product of fatty acid peroxidation, can disturb aminophospholipid organization in the membrane bilayer of human erythrocytes, J. Biol. Chem. 259:3391–3394.Google Scholar
  38. 38.
    Martin, S. J., Reutelingsperger, C. P., McGahon, A. J., Rader, J. A., van Schie R. C., Laface, D. M., and Green, D. R. 1995. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by over expression of Bcl 2 and Abl, J. Exp. Med. 182:1545–1556.Google Scholar
  39. 39.
    Behl, C., Davis, J. B., Lesley, R., and Schubert, D. 1994. Hydrogen peroxide mediates amyloid ?-protein toxicity, Cell 77:817–827.Google Scholar
  40. 40.
    Smith, M. A., Hirai, K., Pappolla, M. A., Harris, P. L. R., Siedlak, S. L., Tabaton, M., and Perry, G. 1998. Amyloid-? deposition in Alzheimer transgenic mice is associated with oxidative stress, J. Neurochem. 70:2212–2215.Google Scholar
  41. 41.
    Cotman, C. W., and Anderson, A. J. 1995. A potential role for apoptosis in neurodegeneration and Alzheimer' disease, Mol. Neurobiol. 10:19–45.Google Scholar
  42. 42.
    LeBlanc, A. 1997. Apoptosis and Alzheimer' disease. Pages 57–71, in Wasco, W. and Tanzi, R. E. (eds.), Molecular Mechanism of Dementia, Human Press, New Jersey.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Abha Chauhan
    • 1
  • Indrani Ray
    • 1
  • Ved P. S. Chauhan
    • 1
  1. 1.New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUSA

Personalised recommendations