Skip to main content
Log in

Induction of UDP-Glucuronosyl-Transferase by the Flavonoids Chrysin and Quercetin in Caco-2 Cells

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Dietary flavonoids have been reported to be potent inhibitorsof drug metabolizing enzymes. In the present study we examined theinducing effect of three of these compounds, chrysin, quercetin andgenistein, on UDP-glucuronosyltransferase (UGT) in the humanintestinal cell line Caco-2.

Methods. The induction of UGT by flavonoid pretreatment was studiedboth in the intact cells and cell homogenates, measured as theglucuronidation of chrysin, and by immunoblot analysis of the UGT 1A protein.

Results. Exposure of Caco-2 cells to 50 μM chrysin resulted in a3.8-fold increase in chrysin glucuronidation in intact cells (p < 0.0001)with a 38% decrease in sulfation (p < 0.01). In the cell homogenatethe induction was much larger, 14-fold. The induction was slow todevelop with maximum induction after 3–4 days. Interestingly, theisoflavonoid genistein was without effect. Immunoblot analysis ofCaco-2 cell microsomes with a UGT1A subfamily-selective antibodyshowed a markedly increased band at about 59 kDa, consistent withinduction of one or more UGT1A isoforms. A 5-week exposure ofCaco-2 cells to low concentrations (10 μM) of chrysin or quercetinalso showed markedly increased glucuronidation activity.

Conclusions. Diet-mediated induction of intestinal UGT may beimportant for the bioavailability of carcinogens and other toxicchemicals as well as therapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Artursson. Epithelial transport of drugs in cell culture. I: a model for studying the passive diffusion of drugs over intestinal absorbtive (Caco-2) cells. J. Pharm. Sci. 79:476–482 (1990).

    Google Scholar 

  2. J. Hunter, M. A. Jepson, T. Tsuruo, N. L. Simmons, and B. H. Hirst. Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells·kinetics of vinblastine secretion and interaction with modulators. J. Biol. Chem. 268:14991–14997 (1993).

    Google Scholar 

  3. V. Meunier, M. Bourrié, Y. Berger, and G. Fabre. The human intestinal epithelial cell line Caco-2; pharmacological and pharmacokinetic applications. Cell Biol. Toxicol. 11:187–194 (1995).

    Google Scholar 

  4. U. K. Walle, A. Galijatovic, and T. Walle. Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2. Biochem. Pharmacol. 58:431–438 (1999).

    Google Scholar 

  5. T. Prueksaritanont, L. M. Gorham, J. H. Hochman, L. O. Tran, and K. P. Vyas. Comparative studies of drug-metabolizing enzymes in dog, monkey, and human small intestines, and in Caco-2 cells. Drug Metab. Dispos. 24:634–642 (1996).

    Google Scholar 

  6. L.-S. L. Gan and D. R. Thakker. Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv. Drug Del. Rev. 23:77–98 (1997).

    Google Scholar 

  7. A. Baranczyk-Kuzma, J. A. Garren, I. J. Hidalgo, and R. T. Borchardt. Substrate specificity and some properties of phenol sulfotransferase from human intestinal Caco-2 cells. Life Sci. 49:1197–1206 (1991).

    Google Scholar 

  8. P. J. Chikhale and R. T. Borchardt. Metabolism of L-α-methyldopa in cultured human intestinal epithelial (Caco-2) cell monolayers: Comparison with metabolism in vivo. Drug Metab. Dispos. 22:592–600 (1994).

    Google Scholar 

  9. S. Bjorge, K. L. Hamelehle, R. Homan, S. E. Rose, D. A. Turluck, and D. S. Wright. Evidence for glucuronide conjugation of p-nitrophenol in the Caco-2 cell model. Pharm. Res. 8:1441–1443 (1991).

    Google Scholar 

  10. R. A. Walgren, U. K. Walle, and T. Walle. Transport of quercetin and its glucosides across human intestinal epithelial Caco-2 cells. Biochem. Pharmacol. 55:1721–1727 (1998).

    Google Scholar 

  11. A. Galijatovic, Y. Otake, U. K. Walle, and T. Walle. Extensive metabolism of the flavonoid chrysin by human Caco-2 and Hep G2 cells. Xenobiotica in press (1999).

  12. X.-Y. Sun, C. A. Plouzek, J. P. Henry, T. T. Y. Wang, and J. M. Phang. Increased UDP-glucuronosyltransferase activity and decreased prostate specific antigen production by biochanin A in prostate cancer cells. Cancer Res. 58:2379–2384 (1998).

    Google Scholar 

  13. M.-H. Siess, J.-P. Mas, M.-C. Canivenc-Lavier, and M. Suschetet. Time course of induction of rat hepatic drug-metabolizing enzyme activities following dietary administration of flavonoids. J. Toxicol. Envir. Health 49:481–496 (1996).

    Google Scholar 

  14. M.-C. Canivenc-Lavier, M.-F. Vernevaut, M. Totis, M.-H. Siess, J. Magdalou, and M. Suschetet. Comparative effects of flavonoids and model inducers on drug-metabolizing enzymes in rat liver. Toxicology 114:19–27 (1996).

    Google Scholar 

  15. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275 (1951).

    Google Scholar 

  16. U. K. Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 (1970).

    Google Scholar 

  17. H. Towbin, T. Staehelin, and J. Gordon. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354 (1979).

    Google Scholar 

  18. M. G. L. Hertog, P. C. H. Hollman, and M. B. Katan. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J. Agric. Food Chem. 40:2379–2383 (1992).

    Google Scholar 

  19. Y.-C. Kao, C. Zhou, M. Sherman, C. A. Laughton, and S. Chen. Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: a site-directed mutagenesis study. Environ. Health Perspect. 106:85–92 (1998).

    Google Scholar 

  20. J. W. Critchfield, J. E. Coligan, T. M. Folks, and S. T. Butera. Casein kinase II is a selective target of HIV-1 transcriptional inhibitors. Proc. Natl. Acad. Sci USA 94:6110–6115 (1997).

    Google Scholar 

  21. D. W. Boulton, U. K. Walle, and T. Walle. Fate of the flavonoid quercetin in human cell lines: Chemical instability and metabolism. J. Pharm. Pharmacol. 51:353–359 (1999).

    Google Scholar 

  22. E. A. Eaton, U. K. Walle, A. J. Lewis, T. Hudson, A. A. Wilson, and T. Walle. Flavonoids, potent inhibitors of the human P-form phenolsulfotransferase: potential role in drug metabolism and chemoprevention. Drug Metab. Dispos. 24:232–237 (1996).

    Google Scholar 

  23. A. Abid, I. Bouchon, G. Siest, and N. Sabolovic. Glucuronidation the Caco-2 human intestinal cell line: Induction of UDP-glucuronosyltransferase 1*6. Biochem. Pharmacol. 50:557–561 (1995).

    Google Scholar 

  24. P. A. Münzel, G. Bookjans, G. Mehner, T. Lehmköster, and K. W. Bock. Tissue-specific 2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible expression of human UDP-glucuronosyltransferase UGT1A6. Arch. Biochem. Biophys. 335:205–210 (1996).

    Google Scholar 

  25. P. A. Münzel, S. Schmohl, H. Heel, K. Kälberer, B. S. Bock-Hennig, and K. W. Bock. Induction of human UDP glucuronosyltransferases (UGT1A6, UGT1A9, and UGT2B7) by t-butylhydroquinone and 2,3,7,8-tetrachlorodibenzo-p-dioxin in Caco-2 cells. Drug Metab. Dispos. 27:569–573 (1999).

    Google Scholar 

  26. C. D. King, M. D. Green, G. R. Rios, B. L. Coffman, I. S. Owens, W. P. Bishop, and T. R. Tephly. The glucuronidation of exogenous and endogenous compounds by stably expressed rat and human UDP-glucuronosyltransferase 1.1 Arch. Biochem. Biophys. 332:92–100 (1996).

    Google Scholar 

  27. M. D. Green, C. D. King, B. Mojarrabi, P. I. Mackenzie, and T. R. Tephly. Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab. Dispos. 26:507–512 (1998).

    Google Scholar 

  28. Z. Cheng, A. Radominska-Pandya, and T. R. Tephly. Cloning and expression of human UDP-glucuronosyltransferase (UGT) 1A8. Arch. Biochem. Biophys. 356:301–305 (1998).

    Google Scholar 

  29. T. Ebner and B. Burchell. Substrate specificities of two stably expressed human liver UDP-glucuronosyltransferases of the UGT1 gene family. Drug Metab. Dispos. 21:50–56 (1993).

    Google Scholar 

  30. M. D. Green, E. M. Oturo, and T. R. Tephly. Stable expression of a human liver UDP-glucuronosyltransferase (UGT2B15) with activity toward steroid and xenobiotic substrates. Drug Metab. Dispos. 22:799–805 (1994).

    Google Scholar 

  31. E. Lévesque, M. Beaulieu, M. D. Green, T. R. Tephly, A. Bélanger, and D. W. Hum. Isolation and characterization of UGT2B15 (Y85): a UDP-glucuronosyltransferase encoded by a polymorphic gene. Pharmacogenetics 7:317–325 (1997).

    Google Scholar 

  32. C. P. Strassburg, N. Nguyen, M. P. Manns, and R. H. Tukey. UDP-Glucuronosyltransferase activity in human liver and colon. Gastroenterology 116:149–160 (1999).

    Google Scholar 

  33. Y. Ishii, A. Takami, K. Tsuruda, A. Kurogi, H. Yamada, and K. Oguri. Induction of two UDP-glucuronosyltransferase isoforms sensitive to phenobarbital that are involved in morphine glucuronidation: production of isoform-selective antipeptide antibodies toward UGT1.1r and UGT2B1. Drug Metab. Dispos. 25:163–167 (1997).

    Google Scholar 

  34. T. Iyanagi, Y. Emi, and S. Ikushiro. Biochemical and molecular aspects of genetic disorders of bilirubin metabolism. Biochem. Biophys. Acta 1407:173–184 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galijatovic, A., Walle, U.K. & Walle, T. Induction of UDP-Glucuronosyl-Transferase by the Flavonoids Chrysin and Quercetin in Caco-2 Cells. Pharm Res 17, 21–26 (2000). https://doi.org/10.1023/A:1007506222436

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007506222436

Navigation