Skip to main content
Log in

New Benzodiazepines Alter Acetylcholinesterase and ATPDase Activities

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study examines the effect of new 1,5 benzodiazepines on acetylcholinesterase (AChE) and ATPDase (apyrase) activities from cerebral cortex of adult rats. Simultaneously, the effects of the classical 1,4-benzodiazepine on these enzymes were also studied for comparative purpose. The compounds 2-trichloromethyl-4-phenyl-3H-1,5-benzodiazepin and 2-trichloromethyl-4-(p-methyl-phenyl)-3H-1,5-benzodiazepin significantly inhibited acetylcholinesterase activity (p < 0.01) when tested in the range of 0.18–0.35 mM. The inhibition caused by these two new benzodiazepines was noncompetitive in nature. Similarly, at concentrations ranging from 0.063 to 0.25 mM, the 1,5 benzodiazepines inhibited ATP and ADP hydrolysis by synaptosomes from cerebral cortex (p < 0.01). However, the inhibition of nucleotide hydrolysis was uncompetitive in nature. Our results suggest that, although diazepam and the new benzodiazepines have chemical differences, they both presented an inhibitory effect on acetylcholinesterase and ATPDase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Richardson, P. J., and Brown, S. J. 1987. ATP release from affinity-purified rat cholinergic nerve terminals. J. Neurochem. 48:622–630.

    Google Scholar 

  2. Wess, J. 1993. Molecular basis of muscarinic acetylcholine receptor function. Trends Pharmacol. Sci. 14:308–313.

    Google Scholar 

  3. Buccafusco, J. J., and Brezenoff, H. E. 1986. Brain neurotransmitters and the development and maintenance of hypertension. Prog. Drug. Res. 30:127–150.

    Google Scholar 

  4. Lundberg, J. M. 1996. Pharmacology of cotransmission in the autonomic nervous system: integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide. Pharmacol. Rev. 48:113–178.

    Google Scholar 

  5. Phillis, J. W., and Wu, P. H. 1981. The role of adenosine and its nucleotide in central synaptic transmission. Prog. Neurobiol. 16:187–239.

    Google Scholar 

  6. Silinski, E. M., Gerzanich, V., and Vanner, S. M. 1992. ATP mediates excitatory synaptic transmission in mammalian neurones. Br. J. Pharmacology 106:762–763.

    Google Scholar 

  7. Edwards, F. A., Gibb, A. J., and Colquhoun, D. 1992. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147.

    Google Scholar 

  8. Schetinger, M. R. C., Bonan, C. D., Frasetto, S., Wyse, A. T., Schierholt, R. Webber, A, Dias, R. D., Sarkis, J. J. F., and Netto, C. A. 1999. Pre-conditioning to global ischemia changes hippocampal acetylcholinesterase in the rat. Biochem. Mol. Biol. Int. 47:473–478.

    Google Scholar 

  9. Schetinger, M. R. C., Bonan, C. D., Schierholt, R. C., Webber, A, Arteni, N., Emanuelli, T., Dias, R. D., Sarkis, J. J. F., and Netto, C. A 1998. Nucleotide Hydrolysis in rats submitted to global cerebral ischemia: a possible link between preconditioning and adenosine production. J. Stroke Cerebrovasc. Dis. 7:281–286.

    Google Scholar 

  10. Nagy, A. K. 1996. Ecto-ATPases-Recent Progress on Structure and Function. Pages 1–13, in Plesner, L., Kirley. T., and Knowles, F. (eds.), Ecto-ATPases of the nervous system. Plenum Press, New York.

    Google Scholar 

  11. Zimmermann, H., Grondal, E. J. M., and Keller, F. 1986. Cellular Biology of Ecto-Enzymes. Pages 35–48, in Kreutzberg, G. W., Reddington, M. and Zimmermann, H. (eds), Hydrolysis of ATP and formation of adenosine at the surface of cholinergic nerve endings. Springer-Verlag, Heidelberg, Berlin, New York, Tokyo.

    Google Scholar 

  12. Zimmermann, H. 1996. Biochemistry, localization and functional roles of ectonucleotidases in the nervous system. Prog. Neurobiol. 49:589–618.

    Google Scholar 

  13. Schetinger, M. R. C., Falquembach, F., Michelot, F., Mezzomo, A., and Rocha, J. B. T. 1998. Heparin modulates adenine nucleotide hydrolysis by synaptosomes from cerebral cortex. Neurochem. Int. 33:243–249.

    Google Scholar 

  14. Battastini, A. M. O., Rocha, J. B. T., Barcellos, C. K., Dias, R. D., and Sarkis, J. J. F. 1991. Characterization of an ATPDase (EC 3.6.1.5) in synaptosomes from cerebral cortex of adult rats. Neurochem. Res. 16:1303–1310.

    Google Scholar 

  15. Meyerhof, O. 1945. The origin of the reaction of Harden and Young in cell-free alcoholic fermentation. J. Biol. Chem. 157: 105–119.

    Google Scholar 

  16. Milatovic, D., and Dettbarn, W-D. 1996. Modification of acetylcholinesterase during adaptation to chronic, subacute paraoxon application in rat. Toxicol. Appl. Pharmacol. 136:20–28.

    Google Scholar 

  17. Black, H. E., Szot, R. J., Arthaud L. E., Massa, T., Mylecraine, M., Klein, M., Lake, R., Fabry, A, Kaminska, G. Z., Sinha, D. P., and Schwartz, E. 1987. Preclinical safety evaluation of the benzodiazepine quazepam. Arzneim.-Forsch.(Drug Res). 37: 906–913.

    Google Scholar 

  18. Owen, G., Smith, T. H. F., and Agersborg Jr. H. P. K. 1970. Toxicity of some benzodiazepine compounds with CNS activity. Toxicol. Appl. Pharmacol. 16:556–570.

    Google Scholar 

  19. Braestrup, C., and Squires, R. F. 1977. Specific benzodiazepine receptor in the brain characterized by high affinity [3H]diazepam binding. Proc. Natl. Acad. Sci. USA 74:3805–3809.

    Google Scholar 

  20. Barnard, E. A., Skolnick, R., Olsen, R. W., Mohler, H., Sieghart, W., Biggio, G., Braestrup, C., Bateson, A. N., and Langer, S. Z. 1998. International union of pharmacology. XV. Subtypes of ?-aminobutyric acid receptors: Classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50: 291–313.

    Google Scholar 

  21. Davis, K. L., and Mohs, R. C. 1982. Enhancement of memory process in Alzheimer's disease with multiple-dose intravenous physostigmine. Am. J. Psychiatry, 139:1421–1424.

    Google Scholar 

  22. Miyamoto, M., Takahashi, H., Kato, K., Hirai, K., Ishihara, Y., and Goto, G. 1996. Effects of 3-[1-(Phenylmethyl)-4-Piperidinyl]-1(2,3,4,5-Tetrahydro-1H-1-Benzazepin-8-yl)-1-Propanone Fumarate (TAK-147), a novel acetylcholinesterase inhibitor, on impaired learning and memory in animal models. J. Pharmacol. Exp. Ther. 277:1292–1304.

    Google Scholar 

  23. Burns A, Russel, E., and Page, S. 1999. New drugs for Alzheimer's Disease. Br. J. Psychiatry, 174:476–479.

    Google Scholar 

  24. Bonan, C. D., Battastini, A. M. O., Schetinger, M. R. C., Moreira, C. M., Frasetto, S., Dias, R. D., and J. J. F. Sarkis. 1997. Effects of 9-amino-1,2,3,4-tetrahydroacridine (THA) on ATPDase (EC 3.6.1.5) and 5?-nucleotidase (EC 3.1.3.5) from rat brain synaptosomes. Gen. Pharmacol. 26:761–766.

    Google Scholar 

  25. Barcellos, C. K., Schetinger, M. R. C., Dias, R. D., and Sarkis, J. J. F. 1998. In vitro effect of central nervous system active drugs on the ATPase-ADPase activity and acetylcholinesterase activity from cerebral cortex of adult rats. Gen. Pharmacol. 31:563–567.

    Google Scholar 

  26. Bonacorso, H. G., Bittencourt, S. T., Wastowski, A. D., Wentz, A. P., Zanatta, N., and Martins, M. A. 1996. A convenient method for the synthesis of 2-trichloromethyl-4-p-substitutedphenyl-3H-1,5-benzodiazepines. Tetrahedron Letters 37:9155–9156.

    Google Scholar 

  27. Ellman, G. L. Courtney, K. D., Andres Jr. V., and Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    Google Scholar 

  28. Villescas, R., Ostwald, R., Morimoto, H., and Bennet, E. 1981. Effects of neonatal undernutrition and cold stress on behavior and biochemical brain parameters in rats. J. Nutr., 11:1103–1110.

    Google Scholar 

  29. Nagy, A., and Delgado-Escueta, A. V. 1984. Rapid preparation of synaptosomes from mammalian brain using a nontoxic isosmotic gradient (Percoll). J. Neurochem., 43:1114–1123.

    Google Scholar 

  30. Chan, K., Delfert, D., and Junger, K. D. 1986. A direct colorimetric assay for Ca2+ ATPase activity. Anal. Biochem., 157: 375–380.

    Google Scholar 

  31. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72:248–254.

    Google Scholar 

  32. Dixon, M., and Webb, E. C. 1964. Enzymes, 2nd ed. p.950. Longmans, London.

    Google Scholar 

  33. Cornish-Bowden, A. 1974. A simple graphical method for determinating the inhibition constant of mixed, uncompetitive and non-competitive inhibitors. Biochem. J. 137:143–144.

    Google Scholar 

  34. Dowd, J., E. and Riggs, D., S. 1965. A comparison of estimaties of Michaelis-Menten kinetic constants from various linear transformations. J. Biol. Chem. 240:863–869.

    Google Scholar 

  35. Role, L. W., and Berg, D. K. 1996. Nicotinic receptors in the development and modulation of CNS synapses. Neuron, 16: 1077–1085.

    Google Scholar 

  36. Evans, R. J., Derkach, V., and Surprenant, A. 1992. ATP mediates fast synaptic transmission in mammalian neurons. Nature, 359:144–147.

    Google Scholar 

  37. Kegel, B., Braun, N., Heine, P., Maliszewski, C. R. and Zimmermann, H. 1997. An ecto-ATPase and nan ecto-ATP diphosphohydrolase are expressed in rat brain. Neuropharmacol. 36:1189–1200.

    Google Scholar 

  38. Szegletes, T., Mallander, W. D., Thomas, P. J., and Rosenberry, T. L. 1999. Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate Inhibition arises as a secondary effect. Biochemistry 38:122–133.

    Google Scholar 

  39. Wilson, I. B. 1957. Specificity in cholinesterase reactions. Pages 175–185, in Pauling, L., and Itano, H. (eds.), Acetylcholines-terase: Molecular Structure and Biological Specificity, American Institute of Biological Sciences, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schetinger, M.R.C., Porto, N.M., Moretto, M.B. et al. New Benzodiazepines Alter Acetylcholinesterase and ATPDase Activities. Neurochem Res 25, 949–955 (2000). https://doi.org/10.1023/A:1007500424392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007500424392

Navigation