Skip to main content
Log in

Altered predator/prey behavior in polluted environments: implications for fish conservation

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Predator/prey behavior has important consequences for individual survival and recruitment into fish populations, both of which can be affected by stressors such as environmental contaminants. The degree to which prey capture or predator avoidance abilities of a predator or prey species are affected will determine the direction in which the balance will be shifted. In a contaminated estuary we have studied, prey capure and predator avoidance of resident mummichogs, Fundulus heteroclitus, are impaired, which may account for individuals in that estuary having reduced growth and longevity compared with those from uncontaminated sites. Exposure to sediments, water, and grass shrimp from the contaminated site can impair the predatory abilities of mummichogs from a clean site. An important prey species, the grass shrimp, Palaemonetes pugio, has a greater population density and a greater proportion of large individuals at the polluted site, apparently because of reduced predation pressure. Mummichog larvae at the polluted site are initially more active and better at prey capture and predator avoidance than larvae from clean sites, but later they become poorer at both. Differences in predator vulnerability among larvae appear to be due to population differences in behavior, which may be due in part to both genetic and environmentally-caused factors. Conservation of fish populations should consider fish behavior and its interaction with contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Atchison, G.J., M.G. Henry & M. Sandheinrich. 1987. Effects of metals on fish behavior: a review. Env. Biol. Fish. 18: 11-25.

    Google Scholar 

  • Auclair, J.C., J.J. Frenette & J. Dodson. 1993. Zooplankton community structure in southwestern Quebec lakes: the roles of acidity and predation. J. Plankton Res. 15: 1103-1128.

    Google Scholar 

  • Block, M. & G.E. Nilsson. 1990. Altered brain catecholamine levels in rainbow trout (Salmo gairdneriRichardson) exposed to diethyldithiocarbamate and amylxanthate. Aquat. Toxicol. 16: 1-8.

    Google Scholar 

  • Breitburg, D., N. Steinberg, S. DuBeau, C. Cooksey & E. Houde. 1994. Effects of low dissolved oxygen on predation on estuarine fish larvae. Mar. Ecol. Prog. Ser. 104: 235-246.

    Google Scholar 

  • Brown, J.A., P.H. Johansen, P.W. Colgan & R.A. Mathers. 1987. Impairment of early feeding behavior of largemouth bass by pentachlorophenol exposure: a preliminary assessment. Trans. Amer. Fish. Soc. 116: 71-78.

    Google Scholar 

  • Cairns, J. & J. Loos. 1967. Changed feeding rate of Brachydanio rerio(Hamilton-Buchanan) resulting from exposure to sublethal concentrations of zinc, potassium dichromate, and alkyl benzene sulfonate detergent. Proc. Pennsylvania Acad. Sci. 40: 47-52.

    Google Scholar 

  • Farr, J.A. 1977. Impairment of antipredator behavior in Palaemonetes pugioby exposure to sublethal doses of parathion. Trans. Amer. Fish. Soc. 106: 287-290.

    Google Scholar 

  • Helfman, G.A., B.D. Collette & D.E. Facey. 1992. The diversity of fishes. Blackwell Science, Malden. 507 pp.

    Google Scholar 

  • Henry, M. & G.J. Atchison. 1990. Metal effects on fish behavior-advances in determining the ecological significance of responses. pp. 131-143. In: A. McIntosh & M. Newman (ed.) Metal Ecotoxicology: Concepts and Applications, Lewis Publishers, Boca Raton.

    Google Scholar 

  • Khan, A.T. & J.S. Weis. 1987. Effects of methylmercury on sperm and egg viability in two populations of mummichogs, Fundulus[TAB]heteroclitus. Arch. Environ. Contam. Toxicol. 16: 499-505.

    Google Scholar 

  • Kneib, R.T. 1986. The role of Fundulus heteroclitusin salt marsh trophic dynamics. Amer. Zool. 26: 259-269.

    Google Scholar 

  • Kneib, R.T. 1987. Predation risk and use of intertidal habitats by young fishes and shrimp. Ecology 68: 379-386.

    Google Scholar 

  • Kraus, M.L. & D.B. Kraus. 1986. Differences in effects of mercury on predator avoidance in two populations of grass shrimp, Palaemonetes pugio. Mar. Environ. Res. 18: 277-289.

    Google Scholar 

  • Little, E.E., R.D. Archeski, B. Flerov & V. Kozlovskaya. 1990. Behavioral indicators of sublethal toxicity in rainbow trout. Arch. Environ. Contam. Toxicol. 19: 380-385.

    Google Scholar 

  • Mesa, M.G., T.P. Poc, D.M. Gadomski & J.H. Petersen. 1994. Are all prey created equal? A review and synthesis of differential predation on prey in substandard condition. J. Fish Biol. 45(Supplement A): 81-96.

    Google Scholar 

  • Morgan, M.J. & J.W. Kiceniuk. 1990. Effect of fenitrothion on the foraging behavior of juvenile Atlantic salmon. Envir. Toxicol. Chem. 9: 489-495.

    Google Scholar 

  • Muguc, N. 1996. Population genetics of Fundulus heteroclitus(L.) in New York/New Jersey Harbor estuary. Ph.D. Dissertation, Rutgers University, Newark. 117 pp.

    Google Scholar 

  • Ostrander, G., J.J. Anderson, J.P. Fisher, M. L. Landolt & R.M. Kocan. 1990. Decreased performance of rainbow trout, Oncorynchus mykissemergence behaviors following embryonic exposure to benzo[a]pyrene. U.S. Fish. Bull. 88: 551-555.

    Google Scholar 

  • Posey, M.H. & A.H. Hines. 1991. Complex predator-prey interactions within an estuarine benthic community. Ecology 72: 2155-2169.

    Google Scholar 

  • Prinslow, T.E., I. Valiela & J.M. Teal. 1974. The effect of detritus and ration size on the growth of Fundulus heteroclitus(L). J. Exper. Mar. Biol. Ecol. 16: 1-10.

    Google Scholar 

  • Santiago, C. 1996. Size frequency distribution of grass shrimp and predator/prey relationships between grass shrimp and killifish in two New Jersey estuaries. M.S. Thesis, New Jersey Institute of Technology, Newark. 55 pp.

    Google Scholar 

  • Savino, J.F., M.G. Henry & H.L. Kincaid. 1993. Factors affecting feeding behavior and survival of juvenile lake trout in the Great Lakes. Trans. Amer. Fish. Soc 122: 366-377.

    Google Scholar 

  • Sih, A., P. Crowley, M. McPeek, J. Petranka & K. Strohmeier. 1985. Predation, competition and prey communities: a review of field experiments. Ann. Rev. Ecol. System. 16: 269-311.

    Google Scholar 

  • Smith, G., A.T. Khan, J.S. Weis & P. Weis. 1995. Behavior and brain chemistry correlates in mummichogs (Fundulus heteroclitus) from polluted and unpolluted environments. Mar. Environ. Res. 39: 329-334.

    Google Scholar 

  • Smith, G. & J.S. Weis. 1997. Predator/prey interactions in Fundulus heteroclitus: effects of living in a polluted environment. J. Exper. Mar. Biol. Ecol. 209: 75-87.

    Google Scholar 

  • Spieler, R.E., A.C. Russo & D.N. Weber. 1995. Waterborne lead affects circadian variations of brain neurotransmitters in fathcad minnows. Bull. Environ. Contam. Toxicol. 55: 412-418.

    Google Scholar 

  • Sullivan, J.F., G.J. Atchison, D.J. Kolar & A.W. MacIntosh. 1978. Changes in predator-prey behavior of fathead minnow (Pimephales promelas) and largemouth bass (Micropterus salmoides) caused by cadmium. J. Fish. Res. Board. Can. 35: 446-451.

    Google Scholar 

  • Toppin, S.V., M. Heber, J.S. Weis & P. Weis. 1987. Changes in reproductive biology and life history in Fundulus heteroclitusin a polluted environment. pp. 171-184. In: W. Vernberg, A. Calabrese, F. Thurberg & F.J. Vernberg (ed.) Pollution Physiology of Estuarine Organisms, University of South Carolina Press, Columbia.

    Google Scholar 

  • Weber, D.N., A. Russo, D. Scale & R. Spieler. 1991. Waterborne lead affects feeding abilities and neurotransmitter levels of juvenile fathead minnows (Pimephales promelas). Aquat. Toxicol. 21: 71-80.

    Google Scholar 

  • Weis, J.S. & A.A. Khan. 1990. Effects of mercury on the feeding behavior of the mummichog, Fundulus heteroclitus, from a polluted habitat. Mar. Environ. Res. 30: 243-249.

    Google Scholar 

  • Weis, J.S. & A.A. Khan. 1991. Reduction in prey capture ability and condition of mummichogs from a polluted habitat. Trans. Amer. Fish. Soc. 120: 127-129.

    Google Scholar 

  • Weis, J.S. & P. Weis. 1989. Tolerance and stress in a polluted environment: the case of the mummichog. BioScience 39: 89-95

    Google Scholar 

  • Weis, J.S. & P. Weis. 1995a. Effects of embryonic exposure to methylmercury on larval prey capture ability in the mummichog, Fundulus heteroclitus. Environ. Toxicol. Chem. 14: 153-156.

    Google Scholar 

  • Weis, J.S. & P. Weis. 1995b. Swimming performance and predator avoidance by mummichog (Fundulus heteroclitus) larvae after embryonic or larval exposure to methylmercury. Can. J. Fish. Aquat. Sci. 52: 2168-2173.

    Google Scholar 

  • Zhou, T. 1997. Behavioral development and neurobehavioral effects of methylmercury on larval mummichogs, Fundulus heteroclitus, from polluted and reference environments. Ph.D. Dissertation, Rutgers University, Newark. 238 pp.

    Google Scholar 

  • Zhou, T., R. Scali, P. Weis & J.S. Weis 1996. Behavioral effects in mummichog (Fundulus heteroclitus) larvae following embryonic exposure to methylmercury. Mar. Environ. Res. 42: 45-49.

    Google Scholar 

  • Zhou, T., P. Weis & J.S. Weis 1998. Mercury burden in two populations of Fundulus heteroclitusafter sublethal methylmercury exposure. Aquat. Toxicol. 42: 37-47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weis, J.S., Smith, G.M. & Zhou, T. Altered predator/prey behavior in polluted environments: implications for fish conservation. Environmental Biology of Fishes 55, 43–51 (1999). https://doi.org/10.1023/A:1007496528012

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007496528012

Navigation