Binder, J., D. Koller, S. Russell, & K. Kanazawa (1997). Adaptive probabilistic networks with hidden variables. Machine Learning, this issue.
Bouckaert, R. R. (1994). Properties of Bayesian network learning algorithms. In R. López de Mantarás & D. Poole (Eds.), Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (pp. 102–109). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Buntine, W. (1991). Theory refinement on Bayesian networks. In B. D. D' Ambrosio, P. Smets, & P. P. Bonissone (Eds.), Proceedings of the Seventh Annual Conference on Uncertainty Artificial Intelligence (pp. 52–60). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Buntine, W. (1996). A guide to the literature on learning probabilistic networks from data. IEEE Trans. on Knowledge and Data Engineering, 8, 195–210.
Google Scholar
Cestnik, B. (1990). Estimating probabilities: a crucial task in machine learning. In L. C. Aiello (Ed.), Proceedings of the 9th European Conference on Artificial Intelligence (pp. 147–149). London: Pitman.
Google Scholar
Chickering, D.M. (1995). Learning Bayesian networks is NP-complete. In D. Fisher & A. Lenz, Learning from Data. Springer-Verlag.
Chickering, D. M. & D. Heckerman (1996). Efficient approximations for the marginal likelihood of incomplete data given a Bayesian network. In E. Horvits & F. Jensen (Eds.), Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (pp. 158–168). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Chow, C. K. & C. N. Liu (1968). Approximating discrete probability distributions with dependence trees. IEEE Trans. on Info. Theory, 14, 462–467.
Google Scholar
Cooper, G. F. & E. Herskovits (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347.
Google Scholar
Cormen, T. H., C. E. Leiserson, & R. L. Rivest (1990). Introduction to Algorithms. Cambridge, MA: MIT Press.
Google Scholar
Cover, T. M. & J. A. Thomas (1991). Elements of Information Theory. New York: John Wiley & Sons.
Google Scholar
Dawid, A. P. (1976). Properties of diagnostic data distributions. Biometrics, 32, 647–658.
Google Scholar
DeGroot, M. H. (1970). Optimal Statistical Decisions. New York: McGraw-Hill.
Google Scholar
Domingos, P. & M. Pazzani (1996). Beyond independence: Conditions for the optimality of the simple Bayesian classifier. In L. Saitta (Ed.), Proceedings of the Thirteenth International Conference on Machine Learning (pp. 105–112). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Dougherty, J., R. Kohavi, & M. Sahami (1995). Supervised and unsupervised discretization of continuous features. In A. Prieditis & S. Russell (Eds.), Proceedings of the Twelfth International Conference on Machine Learning (pp. 194–202). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Duda, R. O. & P. E. Hart (1973). Pattern Classification and Scene Analysis. New York: John Wiley & Sons.
Google Scholar
Ezawa, K. J. & T. Schuermann (1995). Fraud/uncollectable debt detection using a Bayesian network based learning system: A rare binary outcome with mixed data structures. In P. Besnard & S. Hanks (Eds.), Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 157–166). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Fayyad, U. M. & K. B. Irani (1993). Multi-interval discretization of continuous-valued attributes for classification learning. In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (pp. 1022–1027). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Friedman, J. (1997a). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1, 55–77.
Google Scholar
Friedman, N. (1997b). Learning belief networks in the presence of missing values and hidden variables. In D. Fisher (Ed.), Proceedings of the Fourteenth International Conference on Machine Learning (pp. 125–133). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Friedman, N. & M. Goldszmidt (1996a). Building classifiers using Bayesian networks. In Proceedings of the National Conference on Artificial Intelligence (pp. 1277–1284). Menlo Park, CA: AAAI Press.
Google Scholar
Friedman, N. & M. Goldszmidt (1996b). Discretization of continuous attributes while learning Bayesian networks. In L. Saitta (Ed.), Proceedings of the Thirteenth International Conference on Machine Learning (pp. 157–165). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Friedman, N. & M. Goldszmidt (1996c). Learning Bayesian networks with local structure. In E. Horvits & F. Jensen (Eds.), Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (pp. 252–262). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Geiger, D. (1992). An entropy-based learning algorithm of Bayesian conditional trees. In D. Dubois, M. P. Wellman, B. D. D' Ambrosio, & P. Smets (Eds.), Proceedings of the Eighth Annual Conference on Uncertainty Artificial Intelligence (pp. 92–97). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Geiger, D. & D. Heckerman (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82, 45–74.
Google Scholar
Geiger, D., D. Heckerman, & C. Meek (1996). Asymptotic model selection for directed graphs with hidden variables. In E. Horvits & F. Jensen (Eds.), Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (pp. 283–290). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Heckerman, D. (1991). Probabilistic Similarity Networks. Cambridge, MA: MIT Press.
Google Scholar
Heckerman, D. (1995). A tutorial on learning Bayesian networks. Technical Report MSR-TR–95–06, Microsoft Research.
Heckerman, D. & D. Geiger (1995). Learning Bayesian networks: a unification for discrete and Gaussian domains. In P. Besnard & S. Hanks (Eds.), Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 274–284). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Heckerman, D., D. Geiger, & D. M. Chickering (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197–243.
Google Scholar
John, G. & R. Kohavi (1997). Wrappers for feature subset selection. Artificial Intelligence. Accepted for publication. A preliminary version appears in Proceedings of the Eleventh International Conference on Machine Learning, 1994, pp. 121–129, under the title “Irrelevant features and the subset selection problem”.
John, G. H. & P. Langley (1995). Estimating continuous distributions in Bayesian classifiers. In P. Besnard & S. Hanks (Eds.), Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 338–345). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (pp. 1137–1143). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Kohavi, R., G. John, R. Long, D. Manley, & K. Pfleger (1994). MLC++: A machine learning library in C++. In Proc. Sixth International Conference on Tools with Artificial Intelligence (pp. 740–743). IEEE Computer Society Press.
Kononenko, I. (1991). Semi-naive Bayesian classifier. In Y. Kodratoff (Ed.), Proc. Sixth European Working Session on Learning (pp. 206–219). Berlin: Springer-Verlag.
Google Scholar
Kullback, S. & R. A. Leibler (1951). On information and sufficiency. Annals of Mathematical Statistics, 22, 76–86.
Google Scholar
Lam, W. & F. Bacchus (1994). Learning Bayesian belief networks. An approach based on the MDL principle. Computational Intelligence, 10, 269–293.
Google Scholar
Langley, P., W. Iba, & K. Thompson (1992). An analysis of Bayesian classifiers. In Proceedings, Tenth National Conference on Artificial Intelligence (pp. 223–228). Menlo Park, CA: AAAI Press.
Google Scholar
Langley, P. & S. Sage (1994). Induction of selective Bayesian classifiers. In R. López de Mantarás & D. Poole (Eds.), Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (pp. 399–406). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis, 19, 191–201.
Google Scholar
Lewis, P. M. (1959). Approximating probability distributions to reduce storage requirements. Information and Control, 2, 214–225.
Google Scholar
Murphy, P. M. & D. W. Aha (1995). UCI repository of machine learning databases. http://www.ics.uci. edu/~mlearn/MLRepository.html.
Pazzani, M. J. (1995). Searching for dependencies in Bayesian classifiers. In D. Fisher & H. Lenz (Eds.), Proceedings of the fifth International Workshop on Artificial Intelligence and Statistics, Ft. Lauderdale, FL.
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. San Francisco, CA: Morgan Kaufmann.
Google Scholar
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Francisco, CA: Morgan Kaufmann.
Google Scholar
Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge: Cambridge University Press.
Google Scholar
Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465–471.
Google Scholar
Rubin, D. R. (1976). Inference and missing data. Biometrica, 63, 581–592.
Google Scholar
Singh, M. & G.M. Provan (1995). A comparison of induction algorithms for selective and non-selective Bayesian classifiers. In A. Prieditis & S. Russell (Eds.), Proceedings of the Twelfth International Conference on Machine Learning (pp. 497–505). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Singh, M. & G. M. Provan (1996). Efficient learning of selective Bayesian network classifiers. In L. Saitta (Ed.), Proceedings of the Thirteenth International Conference on Machine Learning (pp. 453–461). San Francisco, CA: Morgan Kaufmann.
Google Scholar
Spiegelhalter, D. J., A. P. Dawid, S. L. Lauritzen, & R. G. Cowell (1993). Bayesian analysis in expert systems. Statistical Science, 8, 219–283.
Google Scholar
Suzuki, J. (1993). A construction of Bayesian networks from databases based on an MDL scheme. In D. Heckerman & A. Mamdani (Eds.), Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence (pp. 266–273). San Francisco, CA: Morgan Kaufmann.
Google Scholar