Skip to main content
Log in

Configurational Forces and the Dynamics of Planar Cracks in Three-Dimensional Bodies

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This paper develops a three-dimensional framework for the evolution of planar cracks, concentrating on the derivation of balances and constitutive equations that describe the motion of the crack tip. The theory is based on the notion of configurational forces in conjunction with a mechanical version of the second law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.R. Irwin, Fracture dynamics, in Fracturing of Metals, Cleveland, American Society of Metals, (1948) 147–166.

    Google Scholar 

  2. J.D. Eshelby, The force on an elastic singularity, Phil. Trans. A244 (1951) 87–112.

    MathSciNet  ADS  Google Scholar 

  3. C.A. Truesdell, and W. Noll, The non-linear field theories of mechanics, in Handbuch der Physik III/3 (Edited by S. Flugge), Springer-Verlag, Berlin (1965).

    Google Scholar 

  4. J.R. Rice, Mathematical analysis in the mechanics of fracture, in Fracture 2 (Edited by H. Liebowitzl), New York, Academic, (1968) 191–311.

    Google Scholar 

  5. J.D. Eshelby, Energy relations and the energy-momentum tensor in continuum mechanics in Inelastic Behavior of Solids (Edited by M. Kanninen, W. Adler, A. Rosenfield and R. Jaffee), New York, McGraw Hill, (1970) 77–115.

    Google Scholar 

  6. A.J. Rosakis, J. Duffy, and L.B. Freund, The determination of dynamic fracture toughness of AISI 4340 steel by the shadow spot method, J. Mech. Phys. Solids 32 (1984) 443–460.

    Article  Google Scholar 

  7. P.S. Lam, and L.B. Freund, Analysis of dynamic growth of a tensile crack in an elastic-plastic material, J. Mech. Phys. Solids 33 (1985) 153–167.

    Article  Google Scholar 

  8. S. Angenent, and M.E. Gurtin, Multiphase thermomechanics with interfacial structure. 2. Evolution of an isothermal interface, Arch. Rational Mech. Anal. 108 (1989) 323–391.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. L.B. Freund, Dynamic Fracture Mechanics, Cambridge University Press (1990).

  10. M.E. Gurtin, A. Struthers, Multiphase thermomechanics with interfacial structure. 3. Evolving phase boundaries in presense of bulk deformations, Arch. Rational Mech. Anal. 112 (1990) 97–160.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. A.T. Zehnder, and A. Rosakis, Dynamic fracture initiaion and propagation in 4340 steel under impact loading, Int. J. Fracture 43 (1990) 271–285.

    Article  Google Scholar 

  12. J.P. Hirth, and J. Lothe, Theory of Dislocations, Krieger Publishing Company, Malabar, Florida (1992).

    Google Scholar 

  13. M.E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford University Press (1993).

  14. M.E. Gurtin, The nature of configurational forces, Arch Rational Mech. Anal. 131 (1995) 67–100.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. P. Podio-Guidugli, Inertia and invariance, Ann. Mat. Pura Appl. 171 (1996) to appear.

  16. M.E. Gurtin, and P. Podio-Guidugli, Configurational forces and the basic laws for crack propagation, J Mech. Phys. Solids 44 (1996) 905–927.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurtin, M., Shvartsman, M. Configurational Forces and the Dynamics of Planar Cracks in Three-Dimensional Bodies. Journal of Elasticity 48, 167–191 (1997). https://doi.org/10.1023/A:1007463500515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007463500515

Navigation