Skip to main content
Log in

On Symmetries and Anisotropies of Classical and Micropolar Linear Elasticities: A New Method Based upon a Complex Vector Basis and Some Systematic Results

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A complete and unified study of symmetries and anisotropies of classical and micropolar elasticity tensors is presented by virtue of a novel method based on a well-chosen complex vector basis and algebra of complex tensors. It is proved that every elasticity tensor has nothing but 1-fold, 2-fold, 3-fold, 4-fold and ∞-fold symmetry axes. From this fact it follows that the crystallographic symmetries plus the isotropic symmetry are complete in describing the symmetries of any kind of classical elasticity tensors and micropolar elasticity tensors. Further, it is proved that for each given integer m>>2 every classical Green elasticity tensor with an m-fold symmetry axis must have at least m elastic symmetry planes intersecting each other at this symmetry axis. From this fact and the aforementioned fact it follows that for all possible material symmetry groups, there exist only eight distinct symmetry classes for classical Green elasticity tensors, which correspond to the isotropy group and the seven crystal classes S 2, C 2h , D 2h , D 3d , D 4h , D 6h and O h , while it is shown that there exist twelve distinct symmetry classes for any other kind of elasticity tensors, including the classical Cauchy elasticity tensor and the micropolar elasticity tensors, which correspond to the eight subgroup classes just mentioned and the four crystal classes S 6, C 4h , C6h and T h . From these results, it turns out that all possible elasticity symmetry groups are nothing but the full orthogonal group, the transverse isotropy groups C h and D h , and the nine centrosymmetric crystallographic point groups except C 6h and D 6h .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Voigt, Lehrbuch der Kristallphysik. Teubner, Leipzig (1928).

    MATH  Google Scholar 

  2. J.F. Nye, Physical Properties of Crystals. Oxford Univ. Press (Clarendon), London and New York (1957).

    MATH  Google Scholar 

  3. M.E. Gurtin, The linear theory of elasticity. In: Handbuch der Physik. Vol. VIa/2. Springer, Berlin, New York, etc. (1972).

    Google Scholar 

  4. L.B. Ilcewicz, M.N.L. Narasimhan and J.B. Wilson, Micro and Macro material symmetries in generalized continua. Int. J. Engng. Sci. 24 (1986) 97–109.

    Article  MATH  MathSciNet  Google Scholar 

  5. Q.S. Zheng and A.J.M. Spencer, On the canonical representations for Kronecker powers of orthogonal tensors with applications to material symmetry problems. Int. J. Engng. Sci. 31 617–635.

  6. G. Backus, A geometrical picture of anisotropic elastic tensors. Rew. Geophys. Space Phys. 8 (1970) 633–671.

    Article  ADS  Google Scholar 

  7. R. Baerheim, Harmonic decomposition of the anisotropic elasticity tensors. Q. J. Mech. Appl. Math. 46 (1993) 391–418.

    MATH  MathSciNet  Google Scholar 

  8. J. Betten and W. Helisch, Irreduzible Invarianten eines Tensors vierte Stufe. Zeits. Angew. Math. Mech. 72 (1992) 45–57.

    MATH  MathSciNet  Google Scholar 

  9. A. Blinowski, J. Ostrowska-Maciejewska and J. Rychlewski, Two-dimensional Hooke's tensors — isotropic decomposition, effective symmetry criteria. Arch. Mech. 48 (1996) 325–345.

    MATH  MathSciNet  Google Scholar 

  10. J.P. Boehler, A.A. Kirillov and E.T. Onat, On the polynomial invariants of the elasticity tensor. J. Elasticity 34 (1994) 97–110.

    MATH  MathSciNet  Google Scholar 

  11. S.C. Cowin, Properties of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 42 (1989) 249–266.

    MATH  MathSciNet  Google Scholar 

  12. S.C. Cowin and M.M. Mehrabadi, On the identification of material symmetry for anisotropic elastic materials. Q. J. Mech. Appl. Math. 40 (1987) 451–476.

    MATH  MathSciNet  Google Scholar 

  13. S.C. Cowin and M.M. Mehrabadi, On the structure of the linear anisotropic elastic symmetries. J. Mech. Phys. Solids 40 (1992) 1459–1472.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. S.C. Cowin and M.M. Mehrabadi, Anisotropic symmetries of linear elasticity. Appl. Mech. Rev. 48 (1995) 247–285.

    Article  Google Scholar 

  15. S. Forte and M. Vianello, Symmetry classes for elasticity tensors. J. Elasticity 43 (1996) 81–108.

    Article  MATH  MathSciNet  Google Scholar 

  16. Q.C. He and Q.S. Zheng, On the symmetries of 2D elastic and hyperelastic tensors. J. Elasticity 43 (1996) 203–225.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y.Z. Huo and G. Del Piero, On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor. J. Elasticity 25 (1991) 203–246.

    Article  MATH  MathSciNet  Google Scholar 

  18. M.M. Mehrabadi and S.C. Cowin, Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math. 43 (1990) 15–41.

    MATH  MathSciNet  Google Scholar 

  19. J. Rychlewski, On Hooke's law. Prikl. Math. Mekh. 48 (1984) 303–314.

    MathSciNet  Google Scholar 

  20. J. Rychlewski, Elastic energy decompositions and limit criteria. Advances in Mech. 7(3) 51–80.

  21. J. Rychlewski, Unconventional approach to linear elasticity. Arch. Mech. 47 (1995) 149–171.

    MATH  MathSciNet  Google Scholar 

  22. Y. Surrel, A new description of the tensors of elasticity based upon irreducible representations. Eur. J. Mech. A/Solids 12 (1993) 219–235.

    MATH  MathSciNet  Google Scholar 

  23. S. Sutcliffe, Spectral decomposition of the elasticity tensor. ASME J. Appl. Mech. 59 (1992) 762–773.

    Article  MATH  MathSciNet  Google Scholar 

  24. T.C.T. Ting, Invariants of anisotropic elastic constants. Q. J. Mech. Appl. Math. 40 (1987) 431–448.

    MATH  MathSciNet  Google Scholar 

  25. H. Xiao, Invariant characteristic representations for classical and micropolar anisotropic elasticity tensors. J. Elasticity 40 (1995) 239–265.

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Xiao, On isotropic invariants of the elasticity tensor. J. Elasticity 46 (1997) 115–149.

    Article  MATH  MathSciNet  Google Scholar 

  27. A.G. Khaktevich, The elastic constants of crystals. Kristallographiya 6(5) (1961) 700–703.

    Google Scholar 

  28. B.I. Vainshtein (ed.), Modern Crystallography 1: Fundamentals of Crystals. Springer, Berlin, New York, etc. (1994).

    Google Scholar 

  29. C. Somigliana, Sulla legge di razionalità elastiche dei cristalli. Atti Reale Accad. Naz. Lincei (Rend.) 3 (1894) 238–246.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, H. On Symmetries and Anisotropies of Classical and Micropolar Linear Elasticities: A New Method Based upon a Complex Vector Basis and Some Systematic Results. Journal of Elasticity 49, 129–162 (1997). https://doi.org/10.1023/A:1007448316434

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007448316434

Navigation