Skip to main content
Log in

Fracture Roughness Evolution During Mode I Dynamic Crack Propagation in Brittle Materials

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The evolution of roughness RMS during dynamic fracture in thin plates of epoxy (Araldite B) was studied in relation to important fracture parameters such as crack velocity a, acceleration and deceleration ä and mode I stress intensity factors ( KID ). Dual-focus high speed photography was carried out to evaluate values of KID by the caustic ( KID ( C ) ) and photoelastic ( KID ( P ) ) methods simultaneously. A specially designed jig applied successive tensile loadings to specimens which resulted in cyclic change of a and ä. The changes of a, RMS and KID are shown to be qualitatively similar with respect to the value of a. Quantitatively, a typical result showed that the position of the first maximum value of a came 7 mm behind the first loading axis, while that of KID ( P ), RMS and KID, ( C ) appeared on the fracture surface 7 mm, 15 mm, and 25 mm behind the axis, respectively. The agreement between KID ( C ) and KID ( P ) was acceptable except for data around the first loading axis. Discussions are given on the uniqueness problem of a and KID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, K. and Takahashi, K. (1988). Proceedings of the 6th International Congress on Experimental Mechanics, 746–750.

  • Arakawa, K. and Takahashi, K. (1991a). International Journal of Fracture 48, 103–114.

    Google Scholar 

  • Arakawa, K. and Takahashi, K. (1991b). International Journal of Fracture 48, 245–254.

    Google Scholar 

  • Arakawa, K., Nagoh, D. and Takahashi, K. (1997). Transactions of the Japan Society of Mechanical Engineers 63, 21–25.

    Google Scholar 

  • Beinert, J. and Kalthoff, J.F. (1981). In Mechanics of Fracture (Edited by G.C. Sih), 7, Martinus Nijhoff, The Hague, 281–330.

    Google Scholar 

  • Broberg, K.B. (1996). Constitutive Relation in High/Very High Strain Rates (IUTAM Symposium NODA/JAPAN 1995) Springer, 85–91.

  • Cotterell, B. (1968). International Journal of Fracture Mechanics 4 209–217.

    Google Scholar 

  • Dahlberg, L., Nilsson, F. and Brickstad, B. (1980). In Crack Arrest Methodology and Applications, ASTM-STP 711, 89–108.

    Google Scholar 

  • Dally, J.W., Fourney, W.L. and Irwin, G.R. (1985). International Journal of Fracture 159–168.

  • Dally, J.W., Agarwal, R.K. and Sanford, R.J. (1990). Experimental Mechanics 30, 177–183.

    Google Scholar 

  • Freund, L.B. (1990). Dynamic Fracture Mechanics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hull, D. Journal of Materials Science, to appear.

  • Irwin, G.R. (1958). Proceedings of the Society for Experimental Stress Analysis 16, 93–96.

    Google Scholar 

  • Johnson, F.A. and Radon, J.C. (1973). Materialprüfung 15, 397–402.

    Google Scholar 

  • Kalthoff, J.F., Beinert, J. and Winkler, S. (1977). In Fast Fracture and Crack Arrest, ASTM-STP 627, 161–176.

    Google Scholar 

  • Kido, M. (1995). Dr. Engineering thesis, Kyushu University.

  • Knauss, W.G. and Ravi-Chandar, K. (1985). International Journal of Fracture 27, 127–143.

    Google Scholar 

  • Kobayashi, T. and Dally, J.W. (1977). In Fast Fracture and Crack Arrest, ASTM-STP 627, 257–273.

    Google Scholar 

  • Kobayashi, A.S. and Mall, S. (1978). Experimental Mechanics 18, 11–18.

    Google Scholar 

  • Ramulu, M., Kobayashi, A.S., Kang, B.S. and Barker, D.B. (1983). Experimental Mechanics 23, 431–437.

    Google Scholar 

  • Ravi-Chander, K. and Knauss, W.G. (1984). International Journal of Fracture 26, 65–80.

    Google Scholar 

  • Ravi-Chandar, K. (1997). In Proceedings of 9th International Conference on Fracture 2707–2719.

  • Rosakis, A.J. and Zhender, A.T. (1985a). International Journal of Fracture 169–186.

  • Rosakis, A.J. and Zhender, A.T. (1985b). Journal of Elasticity 15, 347–367.

    Google Scholar 

  • Rosakis, A.J. and Ravi-Chander, K. (1986). International Journal of Solid Structure 22, 121–134.

    Google Scholar 

  • Takahashi, K. and Arakawa, K. (1987). Experimental Mechanics 27, 195–200.

    Google Scholar 

  • Takahashi, K. (1981). Journal of the Japan Society of Aeronautical and Space Sciences 29, 447–452.

    Google Scholar 

  • Takahashi, K. and Mada, T. (1987). Bulletin of Research Institute for Applied Mechanics, Kyushu University 64, 13–30.

    Google Scholar 

  • Takahashi, K. and Mada, T. (1993). Proceedings of the 20th International Congress on High Speed Photographyand Photonics, SPIE 1801, 901–909.

    Google Scholar 

  • Takahashi, K. and Kido, M. (1997). Proceedings of 9th International Conference on Fracture.

  • Takahashi, K. and Aboelezz, Aly E. unpublished.

  • Taudou, C. and Ravi-Chandar, K. (1992). Experimental Mechanics 32, 203–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, K., Kido, M. & Arakawa, K. Fracture Roughness Evolution During Mode I Dynamic Crack Propagation in Brittle Materials. International Journal of Fracture 90, 119–131 (1998). https://doi.org/10.1023/A:1007443419107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007443419107

Navigation