Skip to main content
Log in

Thermal loading of a thin layer with circular debonding over a substrate

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

By using techniques appropriate to mixed boundary value problems, this study addresses the determination of stress intensity factors for a circular interface debonding between a thin layer and a substrate subjected to nearly uniform temperature change. The solution method involves three-dimensional equilibrium equations of thermo-elasticity under axisymmetry conditions. The stress intensity factors are obtained by solving the resulting pair of coupled singular integral equations numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arin, K. and Erdogan, F. (1971). Penny shaped crack in an elastic layer bonded to dissimilar half spaces. International Journal of Engineering Science 9, 213–232.

    Article  MATH  Google Scholar 

  • Barber, J.R. and Comninou, M. (1983). The penny–shaped interface crack with heat flow, Part–2: Imperfect contact. ASME Journal of Applied Mechanics 50, 770–776.

    Article  MATH  MathSciNet  Google Scholar 

  • Comninou, M. (1977). The interface crack. ASME Journal of Applied Mechanics 44, 631–636.

    MATH  Google Scholar 

  • Erdogan, F. and Gupta, G.D. (1971). Layered composites with an interface flaw. International Journal of Solids and Structures 7, 1089–1107.

    Article  MATH  Google Scholar 

  • Harding, J.W. and Sneddon, I.N. (1945). The elastic stresses produced by the indentation of the plane surface of a semi–infinite elastic body by a rigid punch. Proceedings of Cambridge Philosophical Society 41, 16–26.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Her, S.C. (1990). Fracture Mechanics of Interface Cracks Between Dissimilar Anisotropic Materials.Ph.D. Thesis, University of California, Los Angeles.

    Google Scholar 

  • Kabir, H. Madenci, E. and Ortega, A. (1998). Numerical solution of integral equations with logarithmic, Cauchy and Hadamad type singularities. International Journal for Numerical Methods in Engineering 41, 617–638.

    Article  MATH  MathSciNet  Google Scholar 

  • Kokini, K. (1988). Material compatibility in interfacial transient thermal fracture of ceramic–to–metal bonds. ASME Journal of Applied Mechanics 55, 767–772.

    Article  Google Scholar 

  • Kuo, A.–Y. (1984a). Transient stress intensity factors of an interfacial crack between two dissimilar anisotropic half–spaces, Part 1: Orthotropic materials. ASME Journal of Applied Mechanics 51, 71–76.

    Article  MATH  Google Scholar 

  • Kuo, A.–Y. (1984b). Transient stress intensity factors of an interfacial crack between two dissimilar anisotropic half–spaces, Part 2: Fully anisotropic material. ASME Journal of Applied Mechanics 51, 780–786.

    Article  MATH  Google Scholar 

  • Mak, A.F., Keer, L.M., Chen, S.H. and Lewis, J.L. (1980). A no–slip interface crack. ASME Journal of Applied Mechanics, 47, 347–350.

    Article  MATH  Google Scholar 

  • Malyshev, B.M. and Salganik, R.L. (1965). The strength of adhesive joints using the theory of cracks. International Journal of Fracture Mechanics 1, 114–128.

    Article  Google Scholar 

  • Martin–Moran, C.J., Barber, J.R. and Comninou, M. (1983). The penny–shaped interface crack with heat–flow, Part–1: Perfect contact. ASME Journal of Applied Mechanics 50, 29–36.

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, G.R. and Keer, K.M. (1985). A numerical technique for the solution of singular integral equations of the second kind. Quarterly of Applied Mathematics 42, 455–465.

    MATH  MathSciNet  Google Scholar 

  • Munz, D. and Yang, Y.Y. (1992). Stress singularities at the interface in bonded dissimilar materials under mechanical and thermal loading. ASME Journal of Applied Mechanics 59, 857–861.

    Article  ADS  Google Scholar 

  • Muskhelishvili, N.I. (1953). Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Ltd. Groningen, The Netherlands.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balkan, H., Madenci, E. Thermal loading of a thin layer with circular debonding over a substrate. International Journal of Fracture 91, 217–231 (1998). https://doi.org/10.1023/A:1007441514577

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007441514577

Navigation