D-Modules and Darboux Transformations


A method of G. Wilson for generating commutative algebras of ordinary differential operators is extended to higher dimensions. Our construction, based on the theory of D-modules, leads to a new class of examples of commutative rings of partial differential operators with rational spectral varieties. As an application, we briefly discuss their link to the bispectral problem and to the theory of lacunas.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bakalov, B., Horozov, E. and Yakimov, M.: Bäcklund–Darboux transformations in Sato' grassmannian, Serdica Math. J. 22 (1996), 571–588.

    Google Scholar 

  2. 2.

    Bakalov, B., Horozov, E. and Yakimov, M.: Bispectral commutative rings of ordinary differential operators, to appear Comm. Math. Phys.

  3. 3.

    Berest, Yu.: Solution of a restricted Hadamard problem on Minkowski spaces, Comm. Pure Appl. Math. 50(10) (1997), 1021–1054.

    Google Scholar 

  4. 4.

    Berest, Yu.: On algebraic Schrödinger operators and the Baker function inn n > 1 dimensions, in preparation.

  5. 5.

    Berest, Yu. Yu. and Veselov, A. P.: The Hadamard problem and Coxeter groups: new examples of Huygens' equations, Funct. Anal. Appl. 28(1) (1994), 3–12.

    Google Scholar 

  6. 6.

    Berest Yu. Yu. and Veselov, A. P.: Huygens' principle and integrability, Russian Math. Surveys 49(6) (1994), 3–77.

    Google Scholar 

  7. 7.

    Berest, Yu. Yu.: Hierarchies of Huygens' operators and Hadamard' conjecture, Preprint CRM2296, to appear in Acta Math. Appl.

  8. 8.

    Berest, Yu. Yu.: The problem of lacunae and analysis on root systems, Preprint CRM2468, submitted.

  9. 9.

    Berest, Yu. and Grünbaum, F. A.: Rational Baker functions and the bispectral problem in ndimensions, in preparation.

  10. 10.

    Bernstein, I. N.:Modules over a ring of differential operators. Study of the fundamental solutions of equations with constant coefficients, Funct. Anal. Appl. 5(2) (1971), 1–16.

    Google Scholar 

  11. 11.

    Bernstein, I. N.: The analytic continuation of generalized functions with respect to a parameter, Funct. Anal. Appl. 6(4) (1972), 26–40.

    Google Scholar 

  12. 12.

    Björk, J. E.: Rings of Differential Operators, North-Holland Math. Library, North-Holland, Amsterdam, 1979.

    Google Scholar 

  13. 13.

    Borel, A. et al.: Algebraic \(\mathcal{D}\)-modules, Perspect. Math. 2, Academic Press, New York, 1987.

    Google Scholar 

  14. 14.

    Briançon, J. and Maisonobe, Ph.: Idéaux de germes d'opérateurs différentiels à une variable, Enseign. Math. 30 (1984), 7–38.

    Google Scholar 

  15. 15.

    Chalykh, O. A. and Veselov, A. P.: Commutative rings of partial differential operators and Lie algebras, Comm. Math. Phys. 125 (1990), 597–611.

    Google Scholar 

  16. 16.

    Chalykh, O. A. and Veselov, A. P.: Integrability in the theory of the Schrödinger operators and harmonic analysis, Comm. Math. Phys. 152 (1993), 29–40.

    Google Scholar 

  17. 17.

    Darboux, G.: Sur une proposition relative aux equation lineaires, C.R. Acad. Sci. Paris Sér. I Math. 94 (1882), 1456.

    Google Scholar 

  18. 18.

    Duistermaat, J. J. and Grünbaum, F. A.: Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), 177–240.

    Google Scholar 

  19. 19.

    Grünbaum, F. A.: Time-band limiting and the bispectral problem, Comm. Pure Appl. Math. 47 (1994), 307–328.

    Google Scholar 

  20. 20.

    Hadamard, J.: Le problème de Cauchy et les équations aux dérivés partielles linéaires hyperboliques, Paris, 1932.

  21. 21.

    Kasman, A.: Rank r KP solutions with singular rational spectral curves, PhD Thesis, Boston University, 1995.

  22. 22.

    Kasman, A. and Rothstein, M.: Bispectral Darboux transformations: the generalized Airy case, Physica D 102 (1997), 159–173.

    Google Scholar 

  23. 23.

    Kasman, A.: Darboux transformations from n-KdV to KP, Acta Appl. Math. 49(2) (1997), 179–197.

    Google Scholar 

  24. 24.

    Kasman, A.: Darboux transformations and the bispectral problem, to appear in J. Harnad and A. Kasman (eds), The Bispectral Problem, Amer. Math. Soc., Providence, 1997.

    Google Scholar 

  25. 25.

    Krichever, I. M.: Methods of algebraic geometry in the theory of nonlinear equations, Russian Math. Surveys 32(6) (1977), 198–220.

    Google Scholar 

  26. 26.

    Lang, S.: Algebra, AddisonWesley, Englewood Cliffs, 1984.

    Google Scholar 

  27. 27.

    Mebkhout, E.: Le formalisme des six opérations de Grothendieck pour les \(\mathcal{D}\) X-modules holonomes, Hermann, Paris, 1989.

    Google Scholar 

  28. 28.

    Malgrange, B.: ´Equations différentielles á coefficients polynomiaux, Progr.Math. 96, Birkhäuser, Basel, 1991.

    Google Scholar 

  29. 29.

    Malgrange, B.: Motivations and introduction to the theory of \(\mathcal{D}\)-modules, in Computer Algebra and Differential Equations, London Math. Soc. Lecture Notes Ser. 193, Cambridge Univ. Press, 1992, pp. 3–20.

  30. 30.

    Maisonobe, P.: \(\mathcal{D}\)-modules: an overviewtowards effectivity, in Computer Algebra andDifferential Equations, London Math. Soc. Lecture Notes Ser 193, Cambridge Univ. Press, 1992, pp. 3–20.

  31. 31.

    Riesz, M.: L'intégrale de Riemann–Liouville et le problème de Cauchy, Acta. Math. 81 (1949), 1–223.

    Google Scholar 

  32. 32.

    Segal, G. and Wilson, G.: Loop groups and equations of KdV type, Publications Mathematiques No. 61 (1985), pp. 5–65.

  33. 33.

    Veselov, A. P., Styrkas, K. L. and Chalykh, O. A.: Algebraic integrability for the Schrödinger operators and reflections groups, Theoret. and Math. Phys. 94 (1993), 253–275.

    Google Scholar 

  34. 34.

    Veselov, A. P., Feigin, M. V. and Chalykh, O. A.: New integrable deformations of quantum Calogero-Moser problem, Uspekhi Math. Nauk 51(3) (1996), 185–186.

    Google Scholar 

  35. 35.

    Veselov, A. P., Feigin, M. V. and Chalykh, O. A.: New integrable generalizations of quantum Calogero–Moser problem, to appear in J. Math. Phys.

  36. 36.

    Veselov, A. P., Feigin,M. V. and Chalykh, O. A.: The multidimensional Baker–Akhiezer function and Huygens' principle, in preparation.

  37. 37.

    Wilson, G.: Bispectral commutative ordinary differential operators, J. Reine angew. Math. 442 (1993), 177–204.

    Google Scholar 

  38. 38.

    Wilson, G.: Collisions of Calogero–Moser particles and an adelic Grassmannian, to appear in Invent. Math.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berest, Y., Kasman, A. D-Modules and Darboux Transformations. Letters in Mathematical Physics 43, 279–294 (1998). https://doi.org/10.1023/A:1007436917801

Download citation

  • commutative rings of partial differential operators
  • algebraic D-modules
  • Darboux transformations
  • bispecrality
  • quantum integrable systems