Environmental Biology of Fishes

, Volume 51, Issue 2, pp 221–229 | Cite as

Sound production during feeding in Hippocampus seahorses (Syngnathidae)

  • Douglas J. Colson
  • Sheila N. Patek
  • Elizabeth L. Brainerd
  • Sara M. Lewis


While there have been many anecdotal reports of sounds produced by Hippocampus seahorses, little is known about the mechanisms of sound production. We investigated clicking sounds produced during feeding strikes in H. zosterae and H. erectus. Descriptions of head morphology support the idea that feeding clicks may represent stridulatory sounds produced by a bony articulation between the supraoccipital ridge of the neurocranium and the grooved anterior margin of the coronet. Analysis of high-speed video and synchronous sound recordings of H. erectus indicate that the feeding click begins within 1-2 msec of the onset of the rapid feeding strike (4 msec mean duration). Surgical manipulations of the supraoccipital-coronet articulation resulted in a decreased proportion of feeding strikes that produced clicks. This study provides several lines of evidence in support of the hypothesis that feeding clicks in Hippocampus seahorses are stridulatory in origin and are produced by the supraoccipital-coronet articulation. Our results are not consistent with previous suggestions that sounds may be produced by cavitation due to rapid pressure changes within the buccal cavity during the feeding strike.

bioacoustics feeding behavior functional morphology fish cavitation stridulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Azzarello, M.J. 1989. The pterygoid series in Hippocampus zosterae and Sygnathus scovelli (Pisces: Syngnathidae). Copeia 1989: 621–628.Google Scholar
  2. Azzarello, M.J. 1990. A comparative study of the developmental osteology of Sygnathus scovelli and Hippocampus zosterae (Pisces: Sygnathidae) and its phylogenetic implications. Evolutionary Monographs 12: 1–90.Google Scholar
  3. Bergert, B. & P.C. Wainwright. 1997. Morphology and kinematics of prey capture in the syngnathid fishes Hippocampus erectus and Syngnathus floridae. Mar. Biol. 127: 563–570.CrossRefGoogle Scholar
  4. de Amorim, M.C.P. 1996. Sound production in the blue-green damselfish, Chromis viridis (Cuvier, 1830) (Pomacentridae). Bioacoustics 6: 265–272.Google Scholar
  5. Dingerkus, G. & L.D. Uhler. 1977. Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Tech. 52: 229–232.Google Scholar
  6. Dufossé, M. 1874. Ré cherches sur les bruits et les sons é xpressifs que font entendre les poissons d'Europe. Ann. Sci. Nat. Ser. 5, 19: 1–53, 20: 1–134.Google Scholar
  7. Fiedler, K. 1954. Vergleichende Verhaltenstudien an Seenadeln, Schlangennadeln und Seepferdchen (Syngnathidae). Z. Tierpsychol. 11: 358–416.Google Scholar
  8. Fine, M.L., H.E. Winn & B.L. Olla. 1977. Communication in fishes. pp.472–518. In: T.A. Sebeok (ed.) How Animals Communicate, Indiana University Press, Bloomington.Google Scholar
  9. Fish, M.P. 1953. The production of underwater sound by the northern seahorse, Hippocampus hudsonius. Copeia 1953: 98–99.Google Scholar
  10. Fish, M.P. 1954. The character and significance of sound production among fishes of the western North Atlantic. Bull. Bingham Oceanogr. Coll. 14: 1–109.Google Scholar
  11. Fish, M.P., A.S. Kelsey, Jr. & W.H. Mowbray. 1952. Studies on the production of underwater sounds by North Atlantic coastal fishes. J. Mar. Res. 11: 180–193.Google Scholar
  12. Fish, M.P. & W.H. Mowbray. 1970. Sounds of western North Atlantic fishes. Johns Hopkins Press, Baltimore. 207 pp.Google Scholar
  13. Gill, T. 1905. The life history of the sea-horses (hippocampids). Proc. U. S. Nat. Mus. 28: 805–814.Google Scholar
  14. Ginsburg, I. 1937. Review of the seahorses (Hippocampus) found on the coasts of the American continents and of Europe. Proc. U. S. Nat. Mus. 83: 497–595.Google Scholar
  15. Gregory, W.K. 1933. Fish skulls. A study of the evolution of natural mechanisms. Trans. Amer. Phil. Soc. 23: 75–481.Google Scholar
  16. James, P.L. & K.L. Heck, Jr. 1994. The effects of habitat complexity and light intensity on ambush predation within a simulated seagrass habitat. J. Exp. Mar. Biol. Ecol. 176: 187–200.CrossRefGoogle Scholar
  17. Jungersen, H.F.E. 1910. Ichthyotomical contributions. II. The structure of the Aulostomidae, Sygnathidae and Solenostomidae. D. Kgl. Danske Vidensk. Selsk. Skrift. Naturv. (7) 8: 268–364.Google Scholar
  18. Kenyon, T.N. 1994. The significance of sound interception to males of the bicolor damselfish, Pomacentrus partitus, during courtship. Env. Biol. Fish. 40: 391–405.CrossRefGoogle Scholar
  19. Ladich, F. 1990. Vocalizations during agonistic behavior in Cottus gobio L. (Cottidae): an acoustic threat display. Ethology 84: 193–201.CrossRefGoogle Scholar
  20. Lauder, G.V. 1985. Aquatic feeding in lower vertebrates. pp. 210–229. In: M. Hildebrand, D.M. Bramble, K.F. Liem & D.B. Wake (ed.) Functional Vertebrate Morphology, Harvard University Press, Cambridge.Google Scholar
  21. Lauterborn, W. 1997. Cavitation. pp 263–270. In: M.J. Crocker (ed.) Encyclopedia of Acoustics, J.Wiley & Sons, New York.Google Scholar
  22. Lobel, P.S. 1992. Sounds produced by spawning fishes. Env. Biol. Fish. 33: 351–358.CrossRefGoogle Scholar
  23. Masonjones, H.D. & S.M. Lewis. 1996. Courtship behavior in the dwarf seahorse, Hippocampus zosterae. Copeia 1996: 634–640.Google Scholar
  24. Muller, M. & J.W.M. Osse. 1984. Hydrodynamics of suction feeding in fishes. Trans. Zool. Soc. Lond. 37: 51–135.Google Scholar
  25. Myrberg, A.A., Jr. 1981. Sound communication and interception in fishes. pp. 359–426. In: A.R. Popper & R.R. Fay (ed.) Hearing and Sound Communication in Fishes, Springer-Verlag, Berlin.Google Scholar
  26. Myrberg, A.A., Jr., M. Mohler & J.D. Catala. 1986. Sound production by males of a coral reef fish (Pomacentrus partitus): its significance to females. Anim. Behav. 34: 913–923.CrossRefGoogle Scholar
  27. Parvulescu, A. 1966. The acoustics of small tanks. pp. 7–13. In: W.N. Tavolga (ed.) Marine Bioacoustics, Pergamon Press, New York.Google Scholar
  28. Schneider, H. 1966. Morphology and physiology of sound-producing mechanisms in teleost fishes. pp. 135–158. In: W.N. Tavolga (ed.) Marine Bioacoustics, Pergamon Press, New York.Google Scholar
  29. Sebeok, T. (ed.) 1977. How animals communicate. Indiana University Press, Bloomington. 1288 pp.Google Scholar
  30. Smith, A. 1994. Xylem transport and the negative pressures sustainable by water. Annals of Botany 74: 647–651.CrossRefGoogle Scholar
  31. Song, J. & L.R. Parenti. 1995. Clearing and staining whole fish specimens for simultaneous demonstration of bone, cartilage, and nerves. Copeia 1995: 114–118.Google Scholar
  32. Tavolga, W.N. 1956. Visual, chemical and sound stimuli as cues in the sex discriminatory behavior of the gobiid fish Gathygobius soporator. Zoologica 41: 49–65.Google Scholar
  33. Urick, R.J. 1983. Principles of underwater sound, 3rd edition. McGraw-Hill, New York. 423 pp.Google Scholar
  34. Vincent, A.C.J. 1994. Seahorses exhibit conventional sex roles in mating competition, despite male pregnancy. Behaviour 128: 135–151.Google Scholar
  35. Yager, D.D. 1992. Underwater acoustic communication in the African pipid frog Xenopus borealis. Bioacoustics 4: 1–24.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Douglas J. Colson
    • 1
  • Sheila N. Patek
    • 2
  • Elizabeth L. Brainerd
    • 3
  • Sara M. Lewis
    • 1
  1. 1.Department of BiologyTufts UniversityMedfordU.S.A.
  2. 2.Department of ZoologyDuke UniversityDurhamU.S.A
  3. 3.Biology DepartmentUniversity of MassachusettsAmherstU.S.A

Personalised recommendations