Skip to main content

Evolution of freshwater eels of the genus Anguilla: a probable scenario

Abstract

We present a molecular phylogeny of freshwater eels from three oceans and give hypotheses to address major questions about the evolution and geographic distribution of this group. A phylogenetic tree obtained from mitochondrial cytochrome b sequences of eight species of Anguilla suggests that the African species A. mossambica and Australian species A. australis form a clade together with the two Atlantic species, the European eel, A. anguilla, and American eel, A. rostrata , whereas A. marmorata in the Indo-Pacific Ocean, A. reinhardti in northeastern Australia and the Japanese eel, A. japonica, in the northwestern Pacific are placed in another. Most speciation among the lineages is proposed to have occurred during the Eocene to Oligocene (45–30 million years ago, Ma). However, the two Atlantic species are estimated to have separated much later, approximately 10 Ma. The following evolutionary scenario for the dispersal and speciation of these species of anguillid eels is proposed based on general global paleogeography and paleo-circulation. Ancestral eels evolved during the Eocene or earlier, in the western Pacific Ocean near present-day Indonesia. A group derived from this ancestor dispersed westward, by transport of larvae in the global circum-equatorial current through the northern edge of the Tethys Sea. This group split into the ancestor of the European and American eels, which entered the Atlantic Ocean, and a second group, which dispersed southward and split into the east African species and Australian species.

This is a preview of subscription content, access via your institution.

References cited

  1. Andel, T.H.V. 1985. New views on an old planet — continental drift and the history of earth. Tsukiji shokan, Tokyo. 352 pp. (in Japanese)

    Google Scholar 

  2. Aoyama, J., T. Kobayashi K. Tsukamoto. 1996. Phylogeny of eels suggested by mitochondrial DNA sequences. Nippon Suisan Gakkaishi 63: 370–375 (in Japanese).

    Google Scholar 

  3. Avise, J.C., G.S. Helfman, N.C. Saunders L.S. Hales. 1986. Mitochondrial DNA differentiation in North Atlantic eels, population genetic consequences of an unusual life history paltern. Proc. Natl. Acad. Sci. USA 83: 4350–4354.

    Google Scholar 

  4. Avise, J.C., W.S. Nelson, J. Arnold, R.K. Koehn, G.C. Williams V. Thorsteinsson. 1990. The evolutionary genetic status of Icelandic eels. Evolution 44: 1254–1262.

    Google Scholar 

  5. Bertin, L. 1956. Eels. A biological study. Cleaver Hume Press, London. 192 pp.

    Google Scholar 

  6. Castle, P.H.J. G.R. Williamson. 1974. On the validity of the fresh water eel species Angutlla ancestralis Ege, from Celebes. Copeia 1974: 569–570.

  7. Callamand, O. 1943. L'Anguille Europeenne. Les bases physiologique de sa migration. Annll. Inst. Occanogr. 21: 361–440.

    Google Scholar 

  8. Ege, V. 1939. A revision of the genus Anguilla Shaw, a systematic, phylogenetic and geographical study. Dana Rep. 16: 1–256.

    Google Scholar 

  9. Felsenstein, J. 1985. Conlidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Google Scholar 

  10. Haq. B.U. 1984. Paleoceanography: a synoptic overview of 200 million years of occan history. pp. 201–234. In: B.U. Haq J.D. Milliman (ed.) Marine Geography and Oceanography of Arabian Sea and Coastal Pakistan, Van Nostrand Reinhold, New York.

    Google Scholar 

  11. Jellyman, D.J. 1987. Review of the marine life history of Australian temperate species of Anguilla. pp. 276–285. In: M.J. Dadswell, R.J. Klauda, C.M. Moffitt, R.L. Saunders, R.A. Rulif son J.E. Cooper (ed.) Common Strategies of Anadromous and Catadromous Fishes, Proceedings of an International Symposium, American Fisheries Society, Bethesda.

    Google Scholar 

  12. Jespersen, P. 1942. Indo-Pacific leptocephalids of the genus Anguilla. Dana Rep. 22: 1–128.

    Google Scholar 

  13. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    Google Scholar 

  14. Kocher, T.D., W.K. Thomas, A. Meyer, S.V. Edwards, V. Paabo, E.X. Villablanca A.C. Wilson 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86: 6196–6200.

    Google Scholar 

  15. McCleave, J.D., R.C. Kleckner M. Castonguay. 1987. Reproductive sympatry of American and European eels and implications for migration and taxonomy. pp. 286–297. In: M.J. Dadswell, R.J. Klanda, C.M. Moffitt, R.L. Saunders, R.A. Rulifson J.E. Cooper (ed.) Common Strategies of Anadromous and Catadromous Fishes, Proceedings of an International Symposium, American Fisheries Society, Bethesda.

    Google Scholar 

  16. McDowall, R.M. 1987. The occurrence and distribution of diadromy among fishes. pp. 1–13. In: M.J. Dadswell, R.J. Klauda, C.M. Moffitt, R.L. Saunders, R.A. Rulifson J.E. Cooper (ed.) Common Strategies of Anadromous and Catadromous Fishes, Proceeding of an International Symposium. American Fisheries Society, Bethesda.

    Google Scholar 

  17. Meyer, A. 1992. Evolution of mitochondial DNA in fishes. pp. 1–38. In: P.W. Hochachka T.P. Mommsen (ed.) Biochemistry and Molecular Biology of Fishes, vol. 2, Elsevier Science Publishers, New York.

    Google Scholar 

  18. Nelson, J.S. 1984. Fishes of the world, 2nd ed. Wiley-Interscience, New York. 523 pp.

    Google Scholar 

  19. Obata. I. 1993. Natural history of the Cretaccous. University of Tokyo Press, Tokyo. 200 pp. (in Japanese).

    Google Scholar 

  20. Palumbi, S., A. Martin, S. Romano, W.O. McMillan, L. Stice G. Grabowski. 1991. The simple fool's guide to PCR Ver.2.0. University of Hawaii, Honolulu, 40 pp.

    Google Scholar 

  21. Regan, C.T. 1912. The osteology and classification of the teleostean fishes of the order Apodes. Ann. Mag. Nat. Hist. 8(10): 377–387.

    Google Scholar 

  22. Robins, C.R. 1989. The phylogenetic relationships of the Anguilliform fishes. pp. 9–23. In: E.B. Böhlke (ed.) Fishes of the Western North Atlantic, Sears Foundation for Marine Research, Yale University, New Haven.

    Google Scholar 

  23. Saitou, N. M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    Google Scholar 

  24. Tesch, F.W. 1977. The eel. Chapman and Hall, London, 434 pp.

    Google Scholar 

  25. Tsukamoto, K. 1992. Discovery of the spawning area for Japanese eel. Nature 356: 789–791.

    Google Scholar 

  26. Tsukamoto, K. A. Umezawa. 1994. Metamorphosis: a key factor of larval migration determining geographic distribution and speciation of eels. pp. 231–248. In: Faculty of Fishes, Kasetart University (ed.) Proceedings Fourth Indo-Pacific Fish Conference, Kasetart University, Bangkok.

    Google Scholar 

  27. Tucker, D.W. 1959. A new solution to the Atlantic eel problem. Nature 183: 495–501.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsukamoto, K., Aoyama, J. Evolution of freshwater eels of the genus Anguilla: a probable scenario. Environmental Biology of Fishes 52, 139–148 (1998). https://doi.org/10.1023/A:1007427724175

Download citation

  • migration loop
  • Tethys Sea
  • speciation
  • catadromy