Skip to main content
Log in

Remarks on the Behavior of Simple Directionally Reinforced Incompressible Nonlinearly Elastic Solids

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The effect of directional reinforcing in generating qualitative changes in the mechanical response of a base neo-Hookean material is examined in the context of homogenous deformation. Single axis reinforcing giving transverse isotropy is the major focus, in which case a standard reinforcing model is characterized by a single constitutive reinforcing parameter. Various qualitative changes in the mechanical response ensue as the reinforcing parameter increases from the zero-value associated with neo-Hookean response. These include (in order): the existence of a limiting contractive stretch for transverse-axis tensile load; loss of monotonicity in off-axis simple shear; loss of monotonicity in on-axis compression; loss of positivity in the stress-shear product in off-axis simple shear; and loss of monotonicity for plane strain in on-axis compression. The qualitative changes in the simple shear response are associated with stretch relaxation in the reinforcing direction due to finite rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Christensen, Mechanics of Composite Materials. John Wiley & Sons, New York (1979).

    MATH  Google Scholar 

  2. A.S. Wineman and A.C. Pipkin, Material symmetry restrictions on constitutive equations. Arch. Rat. Mech. Anal. 17 (1965) 184–215.

    MathSciNet  Google Scholar 

  3. H. Xiao, General irreducible representations for constitutive equations of elastic crystals and transversely isotropic solids. J. Elasticity 39 (1995) 47–73.

    MATH  MathSciNet  Google Scholar 

  4. Q.S. Zheng, Theory of representations for tensor functions — a unified invariant approach to constitutive equations. Appl. Mech. Rev. 47 (1994) 545–587.

    Article  MATH  Google Scholar 

  5. J.L. Ericksen and R.S. Rivlin, Large elastic deformations of homogeneous anisotropic materials. J. Rat. Mech. Anal. 3 (1954) 281–301.

    MATH  MathSciNet  Google Scholar 

  6. A. Hoger, The elasticity tensor of a transversely isotropic hyperelastic material with residual stress. J. Elasticity 42 (1996) 115–132.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.S. Marlow, On the stress in an internally constrained elastic material. J. Elasticity 27 (1992) 97–131.

    MATH  MathSciNet  Google Scholar 

  8. A. Danescu, Bifurcation in the traction problem for a transversely isotropic material. Math. Proc. Camb. Phil. Soc. 110 (1991) 385–394.

    Article  MATH  MathSciNet  Google Scholar 

  9. G.Y. Qiu and T.J. Pence, Loss of ellipticity in plane deformations of a simple directionally reinforced incompressible nonlinearly elastic solid. J. Elasticity 49 (1997) 31–63.

    Article  MATH  MathSciNet  Google Scholar 

  10. A.E. Green and J.E. Adkins, Large Elastic Deformations. Clarendon Press, Oxford (1960).

    MATH  Google Scholar 

  11. J.E. Adkins and R.S. Rivlin, Large Elastic deformations of isotropic material, X. reinforcement by inextensible cords. Phil. Trans. Roy. Soc. Ser. A 248 (1955) 201–223.

    MATH  MathSciNet  ADS  Google Scholar 

  12. A.C. Pipkin and T.G. Rogers, Plane deformations of incompressible fiber-reinforced materials. J. Appl. Mech. 38 (1971) 634–640.

    MATH  Google Scholar 

  13. A.J.M. Spencer, Deformations of Fiber-Reinforced Materials, Oxford University Press, London (1972).

    Google Scholar 

  14. I.D.R. Bradford, A.H. England and T.G. Rogers, Finite deformations of a fiber-reinforced cantilever: point-force solutions. Acta Mechanica 91 (1992) 77–95.

    Article  MATH  MathSciNet  Google Scholar 

  15. A.H. England, T.G. Rogers and I.D.R. Bradford, Finite deformations of a fiber-reinforced cantilever: distributed-load solution. Q. J. Mech. Appl. Math. 45 (1992) 711–732.

    MATH  MathSciNet  Google Scholar 

  16. T.G. Rogers, Finite deformations of strongly anisotropic materials. In: J.F. Hutton et al. (eds), Theoretical Rheology Chap. 10. Applied Sciences Publishers, London (1975).

    Google Scholar 

  17. T.G. Rogers and A.C. Pipkin, Small deflections of fiber-reinforced beams or slabs. J. Appl. Mech. 38 (1971) 1047–1048.

    Google Scholar 

  18. T.G. Rogers and A.C. Pipkin, Finite lateral compression of a fiber-reinforced tube. Q. J. Mech. Appl. Math. 24 (1971) 311–330.

    MATH  Google Scholar 

  19. D.A. Polignone and C.O. Horgan, Cavitation for incompressible anisotropic nonlinear elastic spheres. J. Elasticity 33 (1993) 27–65.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Kurashige, Instability of a transversely isotropic elastic slab subjected to axial loads. J. Appl. Mech. 48 (1981) 351–356.

    MATH  Google Scholar 

  21. N. Triantafyllidis and R. Abeyaratne, Instability of a finitely deformed fiber-reinforced elastic material. J. Appl. Mech. 50 (1983) 149–156.

    Article  MATH  Google Scholar 

  22. A. Hoger and B.E. Johnson, Linear elasticity for constrained materials: General theory for hyperelasticity. J. Elasticity 38 (1995) 95–120.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Hoger and B.E. Johnson, Linear elasticity for constrained materials: Incompressibility. J. Elasticity 38 (1995) 69–93.

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Zweben, H.T. Hahn and T.W. Chou, Mechanical Behavior and Properties of Composite Materials, Vol. 1. Technomic Publishing Co. (1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, G., Pence, T. Remarks on the Behavior of Simple Directionally Reinforced Incompressible Nonlinearly Elastic Solids. Journal of Elasticity 49, 1–30 (1997). https://doi.org/10.1023/A:1007410321319

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007410321319

Navigation