Skip to main content
Log in

Fresnel Type Path Integral for the Stochastic Schrödinger Equation

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A path integral representation is obtained for the stochastic partial differential equation of Schrödinger type arising in the theory of open quantum systems subject to continuous nondemolition measurement and filtering, known as the a posteriori or Belavkin equation. The result is established by means of Fresnel-type integrals over paths in configuration space. This is achieved by modifying the classical action functional in the expression for the amplitude along each path by means of a stochastic Itô integral. This modification can be regarded as an extension of Menski's path integral formula for a quantum system subject to continuous measurement to the case of the stochastic Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S. A. and HØegh-Krohn, R. J.: Mathematical Theory of Feynman Path Integrals, Lecture Notes in Math. 523, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  2. Albeverio, S. A., Kolokol'tsov, V. N. and Smolyanov, O. G.: Representations of the Belavkin quantum measurement equation by the Menski functional formula, to appear in CR Acad. Sci. Paris, série 1, Math.

  3. Belavkin, V. P.:A new wave equation for a continuous nondemolition measurement, Phys. Lett. A 140 (1989), 355-359.

    Google Scholar 

  4. Belavkin, V. P.: A posterior Schrödinger equation for continuous nondemolition measurement, J. Math. Phys. 31 (1990), 2930-2934.

    Google Scholar 

  5. Belavkin, V. P. and Smolyanov, O. G.: Feynman path integral corresponding the stochastic Schrödinger equation (in Russian), to appear in Dokl. Akad. Nauk.

  6. Dawson, D. A. and Papanicolaou, G. C.: A random wave process, Appl. Math. Optim. 12 (1984), 97-114.

    Google Scholar 

  7. Diósi, L.: Continuous quantum measurement and Itô formalism, Phys. Lett. A 129 (1988), 419- 423.

    Google Scholar 

  8. Doss, H.: Sur une résolution stochastique de l'équation de Schrödinger à coefficients analytiques, Comm. Math. Phys. 73 (1980), 247-264.

    Google Scholar 

  9. Gizin, N.: Quantum measurements and stochastic processes, Phys. Rev. Lett. 52 (1984), 1657- 1660.

    Google Scholar 

  10. Hudson, R. L. and Parthasarathy, K. R.: Quantum Itô's formula and stochastic evolutions, Comm. Math. Phys. 93 (1984), 301-323.

    Google Scholar 

  11. Menski, M. B.: Continuous Quantum Measurements and Path Integrals, Institute of Physics, Bristol, 1993.

    Google Scholar 

  12. Pearle, P.: Combining stochastic dynamical state-vector reduction with spontaneous localization, Phys. Rev. A 39 (1989), 2277-2289.

    Google Scholar 

  13. Truman, A. and Zhao, H. Z.: The stochastic Hamilton-Jacobi equation, stochastic heat equations, and stochastic Schrödinger equations, in: A. Truman, K. D. Elworthy, and I. M. Davies (eds), Stochastic Analysis and Applications, Fifth Gregynog Symposium, Gregynog, Wales, 9-14 July 1995, World Scientific, Singapore, 1996.

    Google Scholar 

  14. Truman, A. and Zhao, H. Z.: On stochastic diffusion equations and stochastic Burgers' equations, J. Math. Phys. 37 (1996), 283-307.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ZASTAWNIAK, T.J. Fresnel Type Path Integral for the Stochastic Schrödinger Equation. Letters in Mathematical Physics 41, 93–99 (1997). https://doi.org/10.1023/A:1007375114656

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007375114656

Navigation