Skip to main content
Log in

Spinor Representations of \({U}_q (\hat {\mathfrak{o}}(N))\) )

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

This Letter concerns an extension of the quantum spinor construction of \({U}_q (\widehat{\mathfrak{g}\mathfrak{l}}(n))\). We define quantum affine Clifford algebras based on the tensor category and the solutions of q-KZ equations, and construct quantum spinor representations of \({\text{U}}_q (\hat {\mathfrak{o}}(N))\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernard, D.: Comm. Math. Phys. 165(1989), 555–568.

    Google Scholar 

  2. Date, E. and Okado, M.: Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A_n^{(1)} \), Internat. J. Modern Phys. A. 9(3) (1994).

  3. Davies, E. and Okado, M.: Excitation spectra of spin models constructed fromquantization affine algebras of type B (1), \(D_n^{(1)} \), hep-th/9506201.

  4. Davis, B., Foda, O., Jimbo, M., Miwa T. and Nakayashiki, A.: Diagonalization of the XXZ Hamiltonian by vertex operators, Comm. Math. Phys. 151(1993), 89–153.

    Google Scholar 

  5. Ding, J.: Spinor representations of Uq(\(\widehat{\mathfrak{g}\mathfrak{l}}\)(n) and quantum Boson–Fermion correspondence RIMS-1043, q-alg/9510014.

  6. Ding, J., Frenkel, I.B.: Isomorphism of two realizations of quantum affine algebra Uq(\(\widehat{\mathfrak{g}\mathfrak{l}}\)(n), Comm. Math. Phys. 156(1993), 277–300.

    Google Scholar 

  7. Ding, J. and Frenkel, I. B.: Spinor and oscillator representations of quantum groups, in: Lie Theory and Geometry in Honor of Bertram Kostant, Progr. in Math. 123, Birkhauser, Boston, 1994.

    Google Scholar 

  8. Drinfeld, V. G.: Hopf algebra and the quantum Yang–Baxter Equation, Dokl. Akad. Nauk. SSSR 283(1985), 1060–1064.

    Google Scholar 

  9. Drinfeld, V. G.: Quantum Groups, ICM Proceedings, New York, Berkeley, 1986, 798–820.

  10. Drinfeld, V. G.: New realization of Yangian and quantum affine algebra, Soviet Math. Dokl. 36 (1988), 212–216.

    Google Scholar 

  11. Faddeev, L. D., Reshetikhin, N. Yu and Takhtajan, L. A.: Quantization of Lie groups and Lie Algebras, Yang-Baxter Equation in Integrable Systems, Adv. Ser. Math. Phys. 10, World Scientific, Singapore, 1989, pp. 299–309.

    Google Scholar 

  12. Feingold, A. J. and Frenkel, I. B.: Classical affine Lie algebras, Adv. Math. 56(1985), 117–172.

    Google Scholar 

  13. Foda, O., Iohara, H., Jimbo, M., Kedem, R., Miwa, T. and Yan, H.: Notes on highest weight modules of the elliptic algebra \(\mathfrak{A}_{p,q} (\widehat{\mathfrak{s}\mathfrak{l}}_2 )\), To appear in T. Inami and R. Sasahi (eds), Quantum Field Theory, Integrable Models and Beyond, Supplements of Progr. Theoret. Phys.

  14. Frenkel, I. B.: Spinor representation of affine Lie algebras, Proc. Natl. Acad. Sci. USA 77(1980) 6303–6306.

    Google Scholar 

  15. Frenkel, I. B.: Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory, J. Funct. Anal. 44(1981), 259–327.

    Google Scholar 

  16. Frenkel, I. B., Lepowsky, J. and Meurman, A.: Vertex Operator Algebras and the Monster, Academic Press, Boston, 1988.

    Google Scholar 

  17. Frenkel, I. B. and Kac, V. G.: Basic representations of affine Lie algebras and dual resonance model, Invent. Math. 62(1980), 23–66.

    Google Scholar 

  18. Frenkel, I. B. and Jing, N.: Vertex representations of quantum affine algebras, Proc. Natl. Acad. Sci. USA 85(1988), 9373–9377.

    Google Scholar 

  19. Frenkel, I. B. and Reshetikhin, N. Yu.: Quantum affine algebras and holomorphic difference equation, Comm. Math. Phys. 146(1992), 1–60.

    Google Scholar 

  20. Garland, H.: The arithmetic theory of loop groups, Publ. Math. IHES 52(1980) 5–136.

    Google Scholar 

  21. Hayashi, T.: Q-analogue of Clifford and Weyl algebras–spinor and oscillator representation of quantum enveloping algebras, Comm. Math. Phys. 127(1990), 129–144.

    Google Scholar 

  22. Jimbo, M.: A q-difference analogue of \({\text{U}}(\mathfrak{g})\) and Yang–Baxter equation, Lett. Math. Phys. 10 (1985), 63–69.

    Google Scholar 

  23. Jimbo, M.: A q-analogue of U q \(\mathfrak{g}l\)(n+1)), Hecke algebra and the Yang–Baxter equation, Lett. Math. Phys. 11(1986), 247–252.

    Google Scholar 

  24. Jimbo, M.: Quantum R-matrix for the generalized Toda systems, Comm. Math. Phys. 102(1986), 537–548.

    Google Scholar 

  25. Jimbo, M.: Introduction to the Yang–Baxter equation, Internat. J. Modern Phys. A 4(15), (1990), 3758–3777.

    Google Scholar 

  26. Jimbo, M., Miki, K., Miwa, T. and Nakayashiki, A.: Correlation functions of the XXZ model for Δ < _1, Phys. Lett. A 168(1992), 256–263.

    Google Scholar 

  27. Jing, N., Kang, S. and Koyama, Y.: Vertex operators of quantum affine algebra \(D_n^{(1)} \), to appear in Comm. Math. Phys.

  28. Kac, V. G.: Infinite Dimensional Lie Algebras, 3rd edn, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  29. Kac, V. G. and Peterson, D. H.: Spinor and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Natl. Acad. Sci. USA 78(1981) 3308–3312.

    Google Scholar 

  30. Kang, S., Kashiwara, M., Misra, K., Miwa, T. Nakashima, T. and Nakayashiki, A.: Affine crystals and vertex models, Internat. J. Modern Phys. A 7(Supp 1.1A) (1992), 449–484.

    Google Scholar 

  31. Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras, Adv. Math. 70(1988), 237–249.

    Google Scholar 

  32. Miki, K.: Creation/annihilation operators and form factors of XXZ model, Phys. Lett. A 186 (1994), 217–224.

    Google Scholar 

  33. Okado, M.: Private communication.

  34. Reshetikhin, N. Yu. and Semenov-Tian-Shansky, M. A.: Central extensions of quantum current groups, Lett. Math. Phys. 19(1990), 133–142.

    Google Scholar 

  35. Smirnov, F. A.: Introduction to quantum groups and integrable massive models of quantum field theory, in: Mo-Lin Ge, Bao-Heng Zhao (eds), Nankai Lectures on Mathematical Physics, World Scientific, Singapore, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DING, J. Spinor Representations of \({U}_q (\hat {\mathfrak{o}}(N))\) ). Letters in Mathematical Physics 39, 81–94 (1997). https://doi.org/10.1023/A:1007359702303

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007359702303

Navigation