Skip to main content
Log in

The Gaussian Polynomial, Restricted k-Rowed Plane Partitions and Hopf Algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Resorting to suitable representations of q-algebras, we give a new proof of the theorem stating that the Gaussian polynomial defined by the q-binomial coefficient is the weight (polynomial generating function) of the restricted (i.e. limited in number and size of summands) k-rowed plane partitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G. E.: q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, Amer. Math. Soc. Regional Conf. Series in Math. 66, Amer. Math. Soc., Providence, 1985.

  2. Gasper, G. and Rahman, M.: Basic hypergeometric series, in: G. C. Rota (ed.), Encyclopedia of Mathematics and its Applications 35, Addison-Wesley, Reading, Mass., 1990.

    Google Scholar 

  3. Chari, V. and Pressley, A.: A Guide to Quantum Groups, Cambridge University Press, 1994.

  4. Goodman, F.M. and O'Hara, K.M.: On the Gaussian polynomials, in: D. Stanton (ed.), q-Series and Partitions, IMA Vol. Math. Appl. 18, Springer-Verlag, Berlin, 1989, p. 57.

    Google Scholar 

  5. Zeilberger, D.: A one-line high-school algebra proof of unimodality of the Gaussian polynomials [ n k ] q for k < 20, in: D. Stanton (ed.), q-Series and Partitions, IMA Vol. Math. Appl. 18, Springer-Verlag, Berlin, 1989, p. 67.

    Google Scholar 

  6. Macdonald, I. G.: An elementary proof of a q-binomial identity, in: D. Stanton (ed.), q-Series and Partitions, IMA Vol. Math. Appl. 18, Springer-Verlag, Berlin, 1989, p. 73.

    Google Scholar 

  7. Sylvester, J. P.: Proof of the hitherto undemonstrated fundamental theorem of invariants, in: J. P. Sylvester: Collected Papers, Vol. 3, Chelsea, New York, 1973, p. 117.

    Google Scholar 

  8. Huges, J. W. B.: Lie algebraic proofs of some theorems on partitions, in: H. Zassenhaus (ed.), Number Theory and Algebra, Academic Press, New York, 1977, p. 135.

    Google Scholar 

  9. Andrews, G. E.: Theory of partitions, in: G. C. Rota, (ed.), Encyclopedia of Mathematics and its Applications 2, Addison-Wesley, Reading, Mass, 1976, p 184.

    Google Scholar 

  10. Stanley, R. P.: Studies in Applied Math. M.I.T. 50 (1971), 167 and 259; also: Unimodal sequences arising from Lie algebras, in: Proc. Young Day (1981).

    Google Scholar 

  11. Lepowsky, J. and Milne, S.: Proc. Natl. Acad. Sci. USA 75 (1978), 578; and Adv. in Math. 29 (1978), 15.

    Google Scholar 

  12. Lepowsky, J.: Adv. in Math. 35 (1980), 179.

    Google Scholar 

  13. White, D.: Adv. in Math 38 (1980), 101.

    Google Scholar 

  14. Macdonald, I. G.: Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1979.

    Google Scholar 

  15. Proctor, R.: Amer. Math. Monthly 89 (1982), 721.

    Google Scholar 

  16. Stanley, R. P.: Order 1 (1984), 29.

    Google Scholar 

  17. O'Hara, K. M.: J. Comb. Theory A 53 (1990), 29.

    Google Scholar 

  18. Celeghini, C. and Rasetti, M.: Internat. J. Modern Phys. B 10 (1996), 1625. mat96068.tex; 14/05/1997; 8:23; v.6; p.6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celeghini, E., Rasetti, M. The Gaussian Polynomial, Restricted k-Rowed Plane Partitions and Hopf Algebras. Letters in Mathematical Physics 40, 171–176 (1997). https://doi.org/10.1023/A:1007311709335

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007311709335

Navigation