Transition Metal Chemistry

, Volume 26, Issue 1–2, pp 13–19 | Cite as

Complexes of tris(o-phenanthroline)nickel(II) and copper(II) bromide with dithiocarbamates derived from α-amino acids

  • Asma I. El-Said
  • Amna S. A. Zidan
  • Mahmoud S. El-Meligy
  • Aref A. M. Aly
  • Omar F. Mohammed

Abstract

Complexes of 1,10-o-phenanthroline (o-phen)-NiII and CuII with dithiocarbamates derived from α-amino acids (glycine, phenylalanine, alanine, methionine and tryptophan) were synthesized and characterized by chemical analysis, spectral and thermal studies and by biological screening; the complexes are non-electrolytes. The empirical formula are [Ni(o-phen)2(aadtc)] and [Cu2(o-phen)2(phaladtc)(H2O)2Br2] where, aadtc = glycinyl-, phenylalaninyl-, alaninyl-, methioninyl- and tryptophanyldithiocarbamate and phaladtc = phenylalaninyldithiocarbamate. The structure of these complexes is probably octahedral. Molecular association through hydrogen bonding between the —NH and the carboxylate groups is proposed for the NiII complexes. The CuII complex is dimeric with the phenylalaninyldithiocarbamate acting as a bridge.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.A. Bulman, Struct. Bonding (Berlin), 67, 130 (1987).Google Scholar
  2. 2.
    S.J. Lippard, Pure Appl. Chem., 59, 739 (1987).Google Scholar
  3. 3.
    K. Savoleine and H. Hervanen, Arch. Toxicol., 8, 272 (1985).Google Scholar
  4. 4.
    H. Komulanien and K. Saroleine, Arch. Toxicol., 8, 77 (1985).Google Scholar
  5. 5.
    G.A. L'Herureux and A.E. Martell, J. Inorg. Nucl. Chem., 28, 481 (1966).Google Scholar
  6. 6.
    H. Sigel and D.B. Mecormick, Accts Chem. Res., 3, 201 (1970).Google Scholar
  7. 7.
    R. Griesser and H. Sigel, Inorg. Chem., 9, 1238 (1970).Google Scholar
  8. 8.
    H. Sigel, P.R. Huber, R. Griesser and B. Prijs, Inorg. Chem., 12, 1198 (1973).Google Scholar
  9. 9.
    P.R. Huber, R. Griesser and H. Sigel, Inorg. Chem., 10, 945 (1971).Google Scholar
  10. 10.
    M. Castillo, J.J. Criado, B. Macias and M.V. Vaquero, Inorg. Chim. Acta, 124, 127 (1986).Google Scholar
  11. 11.
    M. Castillo, J.J. Criado, B. Macias and M.V. Vaquero, Transition Met. Chem., 11, 476 (1986).Google Scholar
  12. 12.
    F.H. Burstall and R.S. Nyholm, J. Chem. Soc., 3570 (1952).Google Scholar
  13. 13.
    B. Macias, J.J. Criado, M.V. Villa, M.R. Iglesias and M. Castillo, Polyhedron, 12, 501 (1993).Google Scholar
  14. 14.
    A.A. Schilt and R.C. Taylor, J. Inorg. Nucl. Chem., 9, 211 (1959).Google Scholar
  15. 15.
    R.G. Inskeep, J. Inorg. Nucl. Chem., 24, 763 (1962).Google Scholar
  16. 16.
    J.J. Criado, J.M. Salas and M. Medarde, Inorg. Chim. Acta, 174, 67 (1990).Google Scholar
  17. 17.
    G.C. Franchini, A. Giusti, C. Preti, L. Tosi and P. Zannini, Polyhedron, 9, 1553 (1985).Google Scholar
  18. 18.
    G.A. Katsoulos and C.A. Tsipis, Inorg. Chim. Acta, 84, 89 (1984).Google Scholar
  19. 19.
    C.C. Hadjikostas, G.A. Katsoulos and S.K. Shakhatreh, Inorg. Chim. Acta, 133, 129 (1987).Google Scholar
  20. 20.
    B. Macias, M.V. Villa and M.R. Rodriguez-Gallego, Transition Met. Chem., 20, 347 (1995).Google Scholar
  21. 21.
    A.W. Coats and J.P. Redfern, Nature, 20, 68 (1968).Google Scholar
  22. 22.
    H.H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963).Google Scholar
  23. 23.
    J. Garcia, M.C. Molla, J. Barras and E. Escriva, Thermochim. Acta, 106, 155 (1986).Google Scholar
  24. 24.
    S.J. Azhari and A.A.M. Aly, Int. J. Chem., 6, 99 (1995).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Asma I. El-Said
    • 1
  • Amna S. A. Zidan
    • 1
  • Mahmoud S. El-Meligy
    • 1
  • Aref A. M. Aly
    • 1
  • Omar F. Mohammed
    • 1
  1. 1.Chemistry Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations