Skip to main content
Log in

Acidity of the Thylakoid Lumen in Plastids Makes Sense from an Evolutionary Perspective

  • Published:
Photosynthetica

Abstract

An acid pH in the lumen of chloroplast thylakoids is necessary in order to derive the required amount of CO2 to account for the observed rates of carbon fixation. We point out that the endosymbiotic derivation of the chloroplast from a cyanobacterium would have resulted in the lumen of the thylakoid having an acid pH. The thylakoids of cyanobacteria are continuous with the plasma membrane, resulting in the lumen of the thylakoid being open to the outside of the cell. Endosymbiosis resulted in the cyanobacterium being taken up into a food vacuole of a protozoan. The vacuole would have had an acid pH, probably around pH 5, so the endosymbiotic bacterium would have been surrounded by an environment with an acidic pH. The lumen of the thylakoids would have been at an acid pH since they were open to the exterior of the cell, and to the contents of the vacuole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Allen, M.M.: Photosynthetic membrane system in Anacystis nidulans.-J. Bacteriol. 96: 836–841, 1968a.

    Google Scholar 

  • Allen, M.M.: Ultrastructure of the cell wall and cell division of unicellular blue-green algae.-J. Bacteriol. 96: 842–851, 1968b.

    Google Scholar 

  • Falkowski, P.G., Raven, J.: Aquatic Photosynthesis.-Blackwell Sci., Oxford 1997.

    Google Scholar 

  • Förster, V., Junge, W.: Stoichiometry and kinetics of proton release upon photosynthetic water oxidation.-Photochem. Photobiol. 41: 183–190, 1985.

    Google Scholar 

  • Fuhs, G.W.: Spherical subunits in photosynthetic membranes of two Cyanophyceae and the bacterium Rhodospirillum rubrum.-Arch. Mikrobiol. 54: 253–265, 1966.

    Google Scholar 

  • Haumann, M., Junge, W.: Extent and rate of proton release by photosynthetic water oxidation in thylakoids: electrostatic relaxation versus chemical production.-Biochemistry 33: 864–872, 1994.

    Google Scholar 

  • Jost, M.: Die Ultrastruktur von Oscillatoria rubescens D.C.-Arch. Mikrobiol. 50: 211–245, 1965.

    Google Scholar 

  • Kasting, J.F., Walker, J.C.G.: The geochemical carbon cycle and the uptake of fossil fuel CO2.-In: Levi, B.G., Hafemeister, D., Sribner, R. (ed.): Global Warming: Physics and Facts. Amer. Institute of Physics Conf. Proc. 247: 175–200, 1991.

  • Klionsky, D.J., Herman, P.K., Emr, S.D.: The fungal vacuole: composition, function, and biogenesis.-Microbiol. Rev. 54: 266–292, 1990.

    Google Scholar 

  • Mellman, I., Fuchs, R., Helenius, A.: Acidification of the endocytic and exocytic pathways.-Annu. Rev. Biochem. 55: 663–700, 1986.

    Google Scholar 

  • Mereschkowsky, C.: Ueber Natur und Ursprung den Chromatophores in Pflanzenreich.-Biol. Zentralbl. 25: 593–604, 1905.

    Google Scholar 

  • Mitchell, P.: Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation.-Glynn Research, Bodmin 1966.

    Google Scholar 

  • Nakamura, N., Matsuura, A., Wada, Y., Ohsumi, Y.: Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae.-J. Biochem. 121: 338–344, 1997.

    Google Scholar 

  • Nelson, N., Taiz, L.: The evolution of H+-ATPases.-Trends biochem. Sci. 14: 113–116, 1989.

    Google Scholar 

  • Pankratz, H.S., Bowen, C.C.: Cytology of blue-green algae. I. The cells of Symloca muscorum.-Amer. J. Bot. 50: 387–399, 1963.

    Google Scholar 

  • Pronina, N.A., Avramova, S., Georgiev, D., Semenenko, V.E.: [A pattern of carbonic anhydrase activity in Chlorella and Scenedesmus on cell adaptation to high irradiance and low CO2 concentration.]-Fiziol. Rast. 28: 43–52, 1981. [In Russ.]

    Google Scholar 

  • Pronina, N.A., Borodin, V.V.: CO2 stress and CO2 concentration mechanism: investigation by means of photosystem-deficient and carbonic anhydrase-deficient mutants of Chlamydomonas reinhardtii.-Photosynthetica 28: 515–542, 1993.

    Google Scholar 

  • Pronina, N.A., Semenenko, V.E.: Membrane-bound carbonic anhydrase takes part in CO2 concentration in algae cells.-In: Baltscheffsky, M. (ed.): Current Research in Photosynthesis. Vol. IV. Pp. 489–492. Kluwer Acad. Publ., Dordrecht-Boston-London 1990.

    Google Scholar 

  • Pronina, N.A., Semenenko, V.E.: Role of pyrenoid in concentration, generation, and fixation of CO2 in the chloroplast of microalgae.-Soviet Plant Physiol. 39: 723–732, 1992.

    Google Scholar 

  • Raven, J.A.: CO2-concentrating mechanisms: a direct role for thylakoid lumen acidification?-Plant Cell Environ. 20: 147–154, 1997.

    Google Scholar 

  • Rippka, R., Waterbury, J., Cohen-Bazire, G.: A cyanobacterium which lacks thylakoids.-Arch. Microbiol. 100: 419–436, 1974.

    Google Scholar 

  • Smith, R.V., Peat, A.: Growth and gas-vacuole development in vegetative cells of Anabaena flosaquae.-Arch. Mikrobiol. 58: 117–156, 1967.

    Google Scholar 

  • Tomashek, J.J., Graham, L.A., Hutchins, M.A., Stevens, T.H., Klionsky, D.J.: V1-situated stalk subunits of the yeast vacuolar proton-translocating ATPase.-J. biol. Chem. 272: 26787–26793, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, R., Kugrens, P. Acidity of the Thylakoid Lumen in Plastids Makes Sense from an Evolutionary Perspective. Photosynthetica 37, 609–614 (2000). https://doi.org/10.1023/A:1007179710277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007179710277

Navigation