Skip to main content
Log in

Endangerment of the brain by glucocorticoids: Experimental and clinical evidence

  • Published:
Journal of Neurocytology

Abstract

In this paper, we review studies suggesting that elevated glucocorticoids increase the susceptibility of the brain to adverse events. The events themselves can be varied, and their effects on the brain can also differ. The common feature is that glucocorticoids may modulate the likelihood (risk) of damage or malfunction following adversity. In the first part of our paper, we describe experimental studies on the brain's cellular response to neurotoxins that support this thesis; in the second, we survey clinical evidence that indicate that glucocorticoids may endanger the brain's response to adverse social events. We suggest that there may be common features in the experimental and clinical findings. To begin, however, we draw attention to some of the properties of the hypothalamic-pituitary-adrenal (HPA) axis that seem relevant to our discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABRAHAMS, L., HARKANY, T., HORVATH, K. M., VEENEMA, A. H., PENKE, B., NYAKAS, C. & LUITEN, P. G. M. (2000) Chronic corticosterone administration dose-dependently modulates Ab(1–42) and Dangers of glucocorticoids; experimental and clinical evidence 445 NMDA-induced neuro degeneration in rat magnocellular nucleus basalis. Journal of Neuroendocrinology 12, 486–494.

    PubMed  Google Scholar 

  • ALTMAN, J. & DAS, G. D. (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. Journal of Comparative Neuroanatomy 124, 319–335.

    Google Scholar 

  • AMAROSO, D., KINDEL, G., WULFERT, E. & HANIN, I. (1994) Long-term exposure to high levels of corticosterone aggravates AF64A-induced cholinergic hypofunction in rat hippocampus in vivo. Brain Research 661, 9–18.

    PubMed  Google Scholar 

  • ANISMAN, H., ZAHARIA, M. D., MEANEY, M. J. & MERALI, Z. (1998) Do early life events permanently alter behavioral and hormonal responses to stressors? International Journal of Developmental Neuroscience 16, 149–164.

    PubMed  Google Scholar 

  • BARBANY, G. & PERSSON, H. (1993) Adrenalectomy attenuates kainic acid-elicited increases of messenger RNAs for neurotrophins and their receptors in the rat brain. Neuroscience 54, 909–922.

    PubMed  Google Scholar 

  • BEHL, C. (1998) Effects of glucocorticoids on oxidative strss-induced hippocampal cell death: Implications for the pathogenesis of Alzheimerís disease. Experimental Gerontology 33, 689–696.

    PubMed  Google Scholar 

  • BEHL, C., LEZOUALCÍH, F., TRAPP, T., WIDMANN, M., SKUTELLA, T. & HOLSBOER, F. (1997) Glucocorticoids enhance oxidative stress-induced cell death in hippocampal neurons in vitro. Endocrinology 138, 101–106.

    PubMed  Google Scholar 

  • BENDER, B. G., LERNER, J. A. & KOLLASCH, E. (1988) Mood and memory changes in asthmatic children receiving corticosteroids. Journal of the American Academy of Child and Adolescent Psychiatry 27, 720–725.

    PubMed  Google Scholar 

  • BROWN, G. W., BIFULCO, A., HARRIS, T. et al. (1986) Life stress, chronic subclinical symptoms and vulnerability to clinical depression. Journal of Affective Disorders 11, 1–19.

    PubMed  Google Scholar 

  • BROWN, G. W. & MORAN, P. (1994) Clinical and psychosocial origins of chronic depressive episodes. I: A community survey. British Journal of Psychiatry 165, 447–456.

    Google Scholar 

  • CAMERON, H. A. & MCKAY, R. D. G. (1999) Restoring production of hippocampal neurons in old age. Nature Neuroscience 2, 894–897.

    PubMed  Google Scholar 

  • CAMERON, H. A., TANAPAT, P. & GOULD, E. (1998) Adrenal steroids and N-methyl-D-aspartate receptor activation regulate neurogenesis in the dentate gyrus of adult rats through a common pathway. Neuroscience 82, 349–354.

    PubMed  Google Scholar 

  • CHEN, X. & HERBERT, J. (1995) Regional changes in c-fos expression in the basal forebrain and brainstem during adaptation to repeated stress: Correlations with cardiovascular, hypothermic and endocrine responses. Neuroscience 64, 675–685.

    PubMed  Google Scholar 

  • CHENG, B. & MATTSON, M. P. (1991) NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilising calcium homeostasis. Neuron 7, 1031–1041.

    PubMed  Google Scholar 

  • CHENG, B. & MATTSON, M. P. (1994) NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Research 640, 56–67.

    PubMed  Google Scholar 

  • CHOI, D. W. (1994) Calcium and excitotoxic neuronal injury. Annals of the New York Academy of Sciences 747, 162–171.

    PubMed  Google Scholar 

  • COPLAN, J. D., ANDREWS, M. W., ROSENBLUM, L. A., OWENS, M. J., FRIEDMAN, S., GORMAN, J. M. & NEMEROFF, C. B. (1996) Persistent elevations of cerebrospinal fluid concentrations of corticotropin releasing factor in adult nonhuman primates exposed to early life stressors: Implications for the pathophysiology of mood and anxiety disorders. Proceedings of the National Academy of Sciences of the USA 93, 1619–1623.

    PubMed  Google Scholar 

  • CORDIMAS, K. P., LEDOUX, J. E., GOLD, P. W. & SCHULKIN, P. W. (1994) Corticosterone potentiation of conditioned fear in rats. Annals of the New York Academy of Sciences 746, 392–394.

    PubMed  Google Scholar 

  • COSI, C., SPOERRI, P. E., COMELLI, M. C., GUIDOLIN, D. & SKAPER, S. D. (1993) Glucocorticoids depress activity-dependent expression of BDNF mRNA in hippocampal neurones. NeuroReport 4, 527–530.

    PubMed  Google Scholar 

  • DAVIS, M. (1992) The role of the amygdala in fear and anxiety. Annual Review of Neuroscience 15, 353–375.

    Article  PubMed  Google Scholar 

  • DE COURTEN-MYERS, G., KLEINHOLZ, M., WAGNER, K., XI, G. & MYERS, R. (1994) Efficacious experimental stroke treatment with high dose methlyprendnisolone. Stroke 25, 487–493.

    PubMed  Google Scholar 

  • DE NICOLA, A. F., FERRINI, M., GONZALEZ, S. L., GONZALEZ DENISELLE, M. C. G., GRILLO, C. A., PIROLI, G., SARAVIA, F. & DE KLOET, E. R. (1998) Regulation of gene expression by corticoid hormones in the brain and spinal cord. Journal of Steroid Biochemistry and Molecular Biology 65, 253–272.

    PubMed  Google Scholar 

  • DOLAN, R. J., CALLOWAY, S. P., FONAGY, P., DE SOUZA, F. V. A. & WAKELING, A. (1985) Life events, depression and hypothalamic-pituitary-adrenal axis function. British Journal of Psychiatry 147, 429–433.

    Google Scholar 

  • DRAGUNOW, M., GODDARD, G. & LAVERTY, A. (1985) Is adenosine an endogenous anticonvulsant. Epilepsia 26, 480–490.

    PubMed  Google Scholar 

  • ELLIOT, E. & SAPOLSKY, R. (1992) Corticosterone enhances kainic acid-induced calcium mobilization in cultured hippocampal neurons. Journal of Neurochemistry 59, 1033–1039.

    PubMed  Google Scholar 

  • ERIKSSON, P. S., PERFILIEVA, E., BJORK-ERIKSSON, T., ALBORN, A. M., NORDBORG, C., PETERSON, D. A. & GAGE, F. H. (1998) Neurogenesis in the adult human hippocampus. Nature Medicine 4, 1313–1317.

    PubMed  Google Scholar 

  • FLAVIN, M. P. (1996) Influence of dexamethasone on neurotoxicity caused by oxygen and glucose deprivation in vitro. Experimental Neurology 139, 34–38.

    PubMed  Google Scholar 

  • FUCHS, E. & FLUGGE, G. (1998) Stress, glucocorticoids and structural plasticity of the hippocampus. Neuroscience Biobehavioural Review 23, 295–300.

    Google Scholar 

  • GOODMAN, Y., BRUCE, A. J., CHENG, B. & MATTSON, M. P. (1996) Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloidpeptide toxicity in hippocampal neurons. Journal of Neurochemistry 66, 1836–1844.

    PubMed  Google Scholar 

  • GOODYER, I. M. (1991) Life Experiences, Development and Childhood Psychopathology. Chichester: John Wiley.

    Google Scholar 

  • GOODYER, I. M., HERBERT, J., TAMPLIN, A. & ALTHAM, P. M. E. (2000) Recent life events, cortisol, DHEA and the onset of major depression in high risk adolescents, submitted.

  • GOULD, E. (1994) The effects of adrenal steroids and excitatory input on neuronal birth and survival. Annals of the New York Academy of Sciences 743, 73–93.

    PubMed  Google Scholar 

  • GOULD, E., MCEWEN, B. S., TANAPAT, P., GALEA, L. A. M. & FUCHS, E. (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. Journal of Neuroscience 17, 2492–2498.

    PubMed  Google Scholar 

  • GOULD, E., WOOLLEY, C. S., CAMERON, H. A., DANIELS, D. C. & MCEWEN, B. S. (1991a) Adrenal steroids regulate postnatal development of the rat dentate gyrus: II. Effects of glucocorticoids and mineraloglucocorticoids on cell birth. Journal of Comparative Neurology 313, 486–493.

    PubMed  Google Scholar 

  • GOULD, E., WOOLLEY, C. S. & MCEWEN, B. S. (1990) Short term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience 37, 367–375.

    PubMed  Google Scholar 

  • GOULD, E., WOOLLEY, C. S. & MCEWEN, B. S. (1991b) Adrenal steroids regulate postnatal development of the rat dentate gyrus: I. Effects of glucocorticoids on cell death. Journal of Comparative Neurology 313, 479–485.

    PubMed  Google Scholar 

  • GUAZZO, E. P., KIRKPATRICK, P. J., GOODYER, I. M., SHIERS, H. M. & HERBERT, J. (1996) Cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate in the cerebrospinal fluid in relation to blood levels and the effects of age. Journal of Clinical and Endocrinological Metabolism 81, 3951–3960.

    Google Scholar 

  • GUNNAR, M. R. (1998) Quality of early care and buffering of the neuroendocrine stress reactions: Potential effects on the developing human brain. Preventative Medicine 27, 208–211.

    Google Scholar 

  • HARRIS, T. O., BORSANYI, S., MESSARI, S., STANFORD, K., CLEARY, S. E., SHIERS, H. M., BROWN, G. W. & HERBERT, J. (2000) Morning cortisol as a risk factor for subsequent major depressive disorder in adult women, submitted.

  • HENRY, J. P. (1992) Biological basis of the stress response. Integrated Physiology and Behavioral Science 27, 66–83.

    Google Scholar 

  • HORNER, H. C., PACKAN, D. R. & SAPOLSKY, R. M. (1990) Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia. Neuroendocrinology 52, 57–64.

    PubMed  Google Scholar 

  • HORTNAGL, H., BERGER, M. L., HAVELEC, L. & HORNYKIEWICZ, O. (1993) Role of glucocorticoids in the cholinergic degeneration in rat hippocampus induced by ethylcholine aziridinium (AF64A). Journal of Neuroscience 13, 2939–2945.

    PubMed  Google Scholar 

  • HUXTABLE, R. (1989) Taurine in the CNS and the mammalian actions of taurine. Progress in Neurobiology 32, 471–503.

    PubMed  Google Scholar 

  • IACOPINO, A. & CHRISTAKOS, S. (1990) Corticosterone regulates Calbindin-D28K mRNA and protein levels in rat hippocampus. Journal of Biological Chemistry 265, 10177–10183.

    PubMed  Google Scholar 

  • JEFFCOATE, W. J., SILVERSTONE, J. T., EDWARDS, C.R. & BESSER, G. M. (1979) Psychiatric manifestations of Cushing's syndrome: Response to lowering of plasma cortisol. Quarterly Journal of Medicine 48, 465–472.

    PubMed  Google Scholar 

  • JOELS, M. & DEKLOET, E. R. (1992) Control of neuronal excitability by corticosteroid hormones. Trends in Neurosciences 15, 25–30.

    PubMed  Google Scholar 

  • JOELS, M. & DEKLOET, E. R. (1993) Corticosteroid actions on amino acid-mediated transmission in rat CA1 pyramidal neurons in vitro. Proceedings of the National Academy of Sciences of the USA 13, 4082–4090.

    Google Scholar 

  • JOHNSON, M., STONE, D., BUSH, L., HANSON, G. & GIBB, J. (1989) Glucocorticoids and 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity. European Journal of Pharmacology 161, 181.

    PubMed  Google Scholar 

  • KADEKARO, M., ITO, M. & GROSS, P. M. (1988) Local cerebral glucose utilization is increased in acutely adrenalectomized rats. Endocrinology 47, 329–334.

    Google Scholar 

  • KEENAN, P. A., JACOBSON, M. W., SOLEYMANI, R. M., MAYES, M. D., STRESS, M. E. & YALDOO, D. T. (1996). The effect on memory of chronic prednisone treatment in patients with systemic disease. Neurology 47, 1396–1402.

    PubMed  Google Scholar 

  • KESSLER, R. C., DAVIS, C. G. & KENDLER, K. S. (1997) Childhood adversity and adult psychiatric disorder in the US National Comorbidity Survey. Psychological Medicine 27, 1101–1119.

    PubMed  Google Scholar 

  • KIMONIDES, V. G., KHATIBI, N. H., SVENDSEN, C. N., SOFRONIEW, M. V. & HERBERT, J. (1998) Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal cultures from excitatory amino acid-induced neurotoxicity. Proceedings of the National Academy of Sciences of the USA 95, 1852–1857.

    PubMed  Google Scholar 

  • KIMONIDES, V. G., SPILLANTINI, M. G., SOFRONIEW, M. V., FAWCETT, J. W. & HERBERT, J. (1999) Dehydroepiandrosterone antagonizes the neurotoxic effects of corticosterone and stress-activated protein kinase 3 in hippocampal primary cultures. Neuroscience 89, 429–436.

    PubMed  Google Scholar 

  • KORNACK, D. R. & RAKIC, P. (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proceedings of the National Academy of Science of the USA 96, 5768–5773.

    Google Scholar 

  • LANDFIELD, P., BASKIN, R. & PITLER, T. (1981) Brain-aging correlates: Retardation by hormonal-pharmacological treatments. Science 214, 581–584.

    PubMed  Google Scholar 

  • LANDFIELD, P., WAYMIRE, J. & LYNCH, G. (1978). Hippocampal aging and adrenoglucocorticoids: Quantitative correlations. Science 202, 1098–1102.

    PubMed  Google Scholar 

  • LEDOUX, J. E. (1998) The Emotional Brain. London: Weidenfeld and Nicolson.

    Google Scholar 

  • LEE, Y., SCHULKIN, J. & DAVIS, M. (1994) Effect of corticosterone on the enhancement of the acoustic startle reflex by corticotropin releasing factor (CRF) Brain Research 666, 93–98.

    PubMed  Google Scholar 

  • LEVERENZ, J. B., WILKINSON, C. W., WAMBLE, M., CORBIN, S., GRABBER, J. E., RASKIND, M. A. & PESKIND, E. R. (1999) Effect of chronic high-dose exogenous cortisol on hippocampal neuronal number in aged non-human primates. Journal of Neuroscience 19, 2356–2361.

    PubMed  Google Scholar 

  • LEWIS, D. A. & SMITH, R. E. (1983) Steroid-induced psychiatric syndromes. Journal of Affective Disorders 5, 319–332.

    PubMed  Google Scholar 

  • LEZOUALCÍH, F., SAGARA, Y., HOLSBOER, F. & BEHL, C. (1998) High constitutive NF-B activity mediates resistance to oxidative stress in neuronal cells. Journal of Neuroscience 18, 3224–3232.

    PubMed  Google Scholar 

  • LINDHOLM, D., CASTREN, E., HENGERER, B., ZAFRA, F., BERNINGER, B. & THOENEN, H. (1992) Dangers of glucocorticoids; experimental and clinical evidence 447 Differential regulation of nerve growth factor (NGF) synthesis in neurons and astrocytes by glucocorticoid hormones. European Journal of Neuroscience 4, 404–410.

    PubMed  Google Scholar 

  • LINKOWSKI, P., VAN ONDERBERGEN, A., KERKHOFS, M., BOSSON, D., MENDLEWICZ, J. & VAN CAUTER, E. (1993) Twin study of the 24-h cortisol profile: Evidence for genetic control of the human circadian clock. American Journal of Physiology 264, E173–181.

    PubMed  Google Scholar 

  • LOWY, M. T. (1991) Corticosterone regulation of brain and lymphoid corticosterone receptors. Journal of Steroid Biochemistry and Molecular Biology 39, 147–154.

    PubMed  Google Scholar 

  • LUPIEN, S. J., DE LEON, M., DE SANTI, S., CONVIT, A., TARSHISH, C., NAIR, N. P. V., THAKUR, M., MCEWEN, B. S., HAUGER, R. L. & MEANEY, M. J. (1998) Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neuroscience 1, 69–73.

    PubMed  Google Scholar 

  • LUPIEN, S. J. & MCEWEN, B. S. (1997) The acute effects of corticosteroids on cognition: Integration of animal and human model studies. Brain Research Reviews 24, 1–27.

    PubMed  Google Scholar 

  • MAGARINOS, A. M. & MCEWEN, B. S. (1995a) Stress-induced atrophy of apical dendrites of hippocampalCA3 neurons: Comparison of stressors. Neuroscience 69, 83–88.

    PubMed  Google Scholar 

  • MAGARINOS, A. M. & MCEWEN, B. S. (1995b) Stress-induced atrophy of apical dendrites of hippocampal CA3 neurons: Involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69, 89–98.

    PubMed  Google Scholar 

  • MARTENSZ, N. D., STACEY, P. M. & HERBERT, J. (1983) Factors regulating levels of cortisol in cerebrospinal fluid of monkeys during acute and chronic hypercortisolaemia. Neuroendocrinology 36, 39–48.

    PubMed  Google Scholar 

  • MATTSON, M. P., LOVELL, M. A., FURUKA, W. A. K. & MARKESBERY, W. R. (1995) Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. Journal of Neurochemistry 65, 1740–1751.

    PubMed  Google Scholar 

  • MCCULLERS, D. L. & HERMAN, J. P. (1998) Mineraloglucocorticoid receptors regulate bcl-2 and p53 mRNA expression in hippocampus. NeuroReport 9, 3085–3089.

    PubMed  Google Scholar 

  • MCEWEN, B., WEISS, J. & SCHWARTZ, L. (1968) Selective retention of corticosterone by limbic structures in rat brain. Nature 220, 911–912.

    PubMed  Google Scholar 

  • MCINTOSH, L. J. & SAPOLSKY, R. M. (1996) Glucocorticoids increase the accumulation of reactive oxygen species and enhance andriamycin-induced toxicity in neuronal culture. Experimental Neurology 141, 201–206.

    PubMed  Google Scholar 

  • MEANEY, M. J., MITCHELL, J. B., AITKEN, D. H., BHATNAGAR, S., BODNOFF, S. R., INY, L. J. & SARRIEAU, A. (1991) The effects of neonatal handling on the development of the adrenocortical response to stress: Implications for neuropathology and cognitive deficits in later life. Psychoneuroendocrinology 16, 85–103.

    PubMed  Google Scholar 

  • MEIKLE, A. W., STRINGHAM, J. D., WOODWARD, M. G. & BISHOP, D. T. (1988) Heritability of variation of plasma cortisol levels. Metabolism 37, 514–517.

    PubMed  Google Scholar 

  • MOCCHETTI, I., SPIGA, G., HAYES, V. Y., ISACKSON, P. J. & COLANGELO, A. (1996) Glucocorticoids differentially increase Nere Growth Factor and Basic Fibroblast Growh Factor expression in the rat brain. Journal of Neuroscience 16, 2141–2148.

    PubMed  Google Scholar 

  • MONTARON, M. F., PETRY, K. G., RODRIGUEZ, J. J., MARINELLI, M., AUROUSSEAU, C., ROUGON, G., LE MOAL, M. & ABROUS, D. N. (1999) Adrenalectomy increase neurogenesis but not PSA-NCAM expression in aged dentate gyrus. European Journal of Neuroscience 11, 1479–1485.

    PubMed  Google Scholar 

  • MONTKOWSKI, A., BARDEN, N., WOTJAK, C., STEC, I., GANSTER, J., MEANEY, M., ENGELMANN, M., REUL, J. M. H. M., LANDGRAF, R. & HOLSBOER, F. (1995) Long-term antidepressant treatment reduces behavioral deficits in transgenic mice with impaired glucocorticoid receptor function. Journal of Neuroendocrinology 7, 841–845.

    PubMed  Google Scholar 

  • MULLER, J., CORODIMAS, K. P., FRIDEL, Z. & LEDOUX, J. E. (1997). Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning. Behavioural Neuroscience 111, 683–691.

    Google Scholar 

  • MUNCK, A. (1971) Glucocorticoid inhibition of glucose uptake by peripheral tissues: Old and new evidence, molecular mechanisms and physiological significance. Perspectives in Biology and Medicine 14, 265–289.

    PubMed  Google Scholar 

  • MURPHY, B. E. (1991) Steroids and depression. Journal of Steroid Biochemistry and Molecular Biology 38, 537–559.

    PubMed  Google Scholar 

  • NABER, D., SAND, P. & HEIGL, B. (1996). Psychopathological and neuropsychological effects of 8-days' corticosteroid treatment. A prospective study. Psychoneuroendocrinology 21, 25–31.

    PubMed  Google Scholar 

  • NEWCOMER, J. W., SELKE, G., MELSON, A. K., HERSHEY, T., CRAFT, S., RICHARDS, K. & ALDERSON, A. L. (1999). Decreased memory performance in healthy humans induced by stress-level cortisol treatment. Archives of General Psychiatry 56, 527–533.

    PubMed  Google Scholar 

  • NITTA, A., OHMIY, A. M., SOMETANI, A., ITOH, M., NOMOTO, H., FURUKAWA, Y. & FURUKAWA, S. (1999) Brain-Derived Neurotrophic Factor prevents neuronal death induced by corticosterone. Journal of Neuroscience Research 57, 227–235.

    PubMed  Google Scholar 

  • NIU, H., HINKLE, D. A. & WISE, P. M. (1997) Dexamethasone regulates basic fibroblast growth factor, nerve growth factor and S100 ( expression in cultured hippocampal astrocytes). Molecular Brain Research 51, 97–105.

    PubMed  Google Scholar 

  • OITZL, M. S., FLUTTERT, M. & DE KLOET, E. R. (1994) The effect of corticosterone on reactivity to spatial novelty is mediated by central mineralocorticosteroid receptors. European Journal of Neuroscience 6, 1072–1079.

    PubMed  Google Scholar 

  • OLSSON, T., MARKLUND, N., GUSTAFSON, Y. & NASMAN, B. (1992) Abnormalities at different levels of the hypothalamic-pituitary-adrenocortical axis early after stroke. Stroke 23, 1573–1576.

    PubMed  Google Scholar 

  • ORCHINIK, M., WEILAND, N. G. & MCEWEN, B. S. (1995) Chronic exposure to stress levels of corticosterone alters GABAA receptor subunit mRNA levels in rat hippocampus. Molecular Brain Research 34, 29–37.

    PubMed  Google Scholar 

  • ORENTREICH, N., BRIND, J. L., VOGELMAN, J. H., ANDRES, R. & BALDWIN, H. (1992) Long-term longitudinal measurements of plasma dehydroepiandrosterone sulfate in normal men. Journal of Clinical and Endocrinological Metabolism 75, 1002–1004.

    Google Scholar 

  • PARROTT, W. G. & SCHULKIN, J. (1993) Neuropsychology and the cognitive nature of the emotions. Cognition and Emotions 7, 43–59.

    Google Scholar 

  • PEETERS, B. W. M. M. & BROEKKAMP, C. L. E. (1994) Involvement of corticosteroids in the processing of stressful life-events. A possible implication for the development of depression. Journal of Steroid Biochemistry and Molecular Biology 49, 417–427.

    PubMed  Google Scholar 

  • QUIRARTE, G. L., ROOZENDAAL, B. & MCGAUGH, J. L. (1997) Glucocorticoid enhancement of memory storage involves noradrenergic activationin the basolateralamygdala. Proceedings of the National Academy of Sciences of the USA 94, 14048–14053.

    PubMed  Google Scholar 

  • ROOZENDAAL, B. & MCGAUGH, J. L. (1997) Basolateral amygdala lesions block the memory-enhancing effect of glucocorticoid administration in the dorsal hippocampus of rats. European Journal of Neuroscience 9, 76–83.

    PubMed  Google Scholar 

  • ROOZENDAAL, B., NGUYEN, B. T., POWER, A. & MCGAUGH, J. L. (1999) Basolateral amygdala noradrenergic influence enables enhancement of memory consolidation induced by hippocampal glucocorticoid receptor activation. Proceedings of the National Academy of Sciences of the USA 96, 11642–11647.

    PubMed  Google Scholar 

  • RUBINOW, D. R., POST, R. M., SAVARD, R. & GOLD, P. W. (1984) Cortisol hypersecretion and cognitive impairment in depression. Archives of General Psychiatry 41, 279–283.

    PubMed  Google Scholar 

  • SAPOLSKY, R. (1985a) Glucocorticoid toxicity in the hippocampus: Temporal aspects of neuronal vulnerability. Brain Research 359, 300–306.

    PubMed  Google Scholar 

  • SAPOLSKY R. M. (1985b) A mechanism for glucocorticoid toxicity in the hippocampus: Increased neuronal vulnerability to metabolic insults. Journal of Neuroscience 5, 1228–1232.

    PubMed  Google Scholar 

  • SAPOLSKY, R. M., KREY, L. C. & MCEWEN, B. S. (1985) Prolonged glucocorticoid exposure reduces hippocampal neuron number: Implications for aging. Journal of Neuroscience 5, 1222–1227.

    PubMed  Google Scholar 

  • SAPOLSKY, R. (1986) Glucocorticoid toxicity in the hippocampus: Reversal by supplementation with brain fuels. Journal of Neuroscience 6, 2240.

    PubMed  Google Scholar 

  • SAPOLSKY, R., PACKAN, D. R. & VALE, W. W. (1988) Glucocorticoid toxicity in the hippocampus: In vitro demonstration. Brain Research 453, 367–371.

    PubMed  Google Scholar 

  • SAPOLSKY, R. M. (1992) Stress, the Aging Brain, and the Mechanisms of Neuron Death. Cambridge, MA: MIT Press.

    Google Scholar 

  • SAPOLSKY, R. & PULSINELLI, W. (1986) Glucocorticoids potentiate ischaemic injury to neurons: Therapeutic implications. Science 229, 1397–1400.

    Google Scholar 

  • SCHAAF, M. J. M., HOETELMANS, R. W. M., DE KLOET, E. R. & VREUGDENHIL, E. (1997) Corticosterone regulates expression of BDNF and trk B mRNA but not NT-3 and trkC mRNA in the rat hippocampus. Journal of Neuroscience Research 48, 334–341.

    PubMed  Google Scholar 

  • SECKL, J. R. & CHAPMAN, K. E. (1997) Medical and physiological aspects of the 11beta-hydroxysteroid dehydrogenase system. European Journal of Biochemistry 249, 361–364.

    PubMed  Google Scholar 

  • SELYE, H. (1978) The stress of life. New York: McGraw-Hill.

    Google Scholar 

  • SHELINE, Y. I., SANGHAVI, M., MINTUN, M. A. & GADO, M. H. (1999) Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. Journal of Neuroscience 19, 5034–5043.

    PubMed  Google Scholar 

  • SLOVITER, R. S., VALIQUETTE, G., ABRAMS, G. M., RONK, E. C., SOLLAS, A. I., PAUL, L. A. & NEUBORT, S. L. (1989) Selective loss of hippocampal granule cells in the mature brain after adrenalectomy. Science 243, 535–538.

    PubMed  Google Scholar 

  • SMITH, M., MAKINO, S., KVETNANSKY, R. & POST, R. M. (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. Journal of Neuroscience 15, 1768–1777.

    PubMed  Google Scholar 

  • SMITH-SWINTOSKY, V., PETTIGRE, W. L., SAPOLSKY, R. M., PHARES, C., CRADDOCK, S., BROOKE, S. & MATTSON, M. (1996) Metyrapone, an inhibitor of glucocorticoid production, reduces brain injury induced by focal and global ischemia and seizures. Journal of Cerebral Blood Flow and Metabolism 16, 585–598.

    PubMed  Google Scholar 

  • STARKMAN, M. N., SCHTEINGART, D. E. & SCHORK, M. A. (1986) Cushing's syndrome after treatment: Changes in cortisol and ACTH levels, and amelioration of the depressive syndrome. Psychiatry Research 19, 177–188.

    PubMed  Google Scholar 

  • STARKMAN, M. N., GEBARSKI, S. S., BERENT, S. & SCHTEINGART, D. E. (1992) Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing's syndrome. Biological Psychiatry 32, 756–765.

    PubMed  Google Scholar 

  • STEIN, B. & SAPOLSKY, R. M. (1988) Chemical adrenalectomy reduces hippocampal damage induced by kainic acid. Brain Research 473, 175–181.

    PubMed  Google Scholar 

  • STEIN-BEHRENS, B. A., LIN, W. J. & SAPOLSKY, R. M. (1994) Physiological elevations of glucocorticoids potentiate glutamate accumulation in the hippocampus. Journal of Neurochemistry 63, 596–601.

    PubMed  Google Scholar 

  • STRIJBOS, P. J., RELTON, J. K. & ROTHWELL, N. J. (1994) Corticotrophin releasing factor antagonist inhibits neuronal damage induced by focal cerebral ischaemia or activation of NMDA receptors in the rat brain. Brain Research 656, 405–408.

    PubMed  Google Scholar 

  • STUTZMANN, G. E., MCEWEN, B. S. & LEDOUX, J. E. (1998) Serotonin modulation of sensory inputs to the lateral amygdala: Dependency on corticosterone. Journal of Neuroscience 18, 9529–9538.

    PubMed  Google Scholar 

  • SUPKO, D. & JOHNSTON, M. (1994) Dexamethasone potentiates NMDA receptor-mediated neuronal injury in the postnatal rat. European Journal of Pharmacology 270, 105–109.

    PubMed  Google Scholar 

  • TOMBAUGH, G. C., YANG, S. H., SWANSON, R. A. & SAPOLSKY, R. M. (1992) Glucocorticoids exacerbate hypoxic and hypoglycemic hippocampal injury in vitro; biochemical correlates and a role for astrocytes. Journal of Neurochemistry 59, 137–146.

    PubMed  Google Scholar 

  • TOMBAUGH, G. C. & SAPOLSKY, R. M. (1993) Endocrine features of glucocorticoid endangerment in hippocampal astrocytes. Neuroendocrinology 57, 7–15.

    PubMed  Google Scholar 

  • THOMPSON, E. B. (1994) Apoptosis and steroid hormones. Molecular Endocrinology 8, 665–673.

    PubMed  Google Scholar 

  • UHLER, T., FRIM, D., PAKZABAN, P. & ISACSON, O. (1994) The effects of mega-dose methlyprednisolone and U-78517F on glutamate receptor-mediated toxicity in the rat neostriatum. Neurosurgery 34, 122–127.

    PubMed  Google Scholar 

  • UNLAP, M. T. & JOPE, R. S. (1997) Dexamethasone attenuates NF-kappaB DNA binding activity without inducing IkappaB levels in rat brain in vivo. Molecular Brain Research 45, 83–89.

    PubMed  Google Scholar 

  • VIRGIN, C. E. JR., HA TP-T, PACKAN, D. R., TOMBAUGH, G. C., YANG, S. H., HORNER, H. C. & SAPOLSKY, R. M. (1991) Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: Implications for glucocorticoid neurotoxicity. Journal of Neurochemistry 57, 1422–1428.

    PubMed  Google Scholar 

  • WATANABE, Y., GOULD, E. & MCEWEN, B. (1992) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Research 588, 341–346.

    PubMed  Google Scholar 

  • WOLKOWITZ, O. M. (1994). Prospective controlled studies of the behavioural and biological effects of exogenous corticosteroids. Psychoneuroendocrinology 19, 233–255.

    PubMed  Google Scholar 

  • WOLKOWITZ, O. M., REUS, V. I., WEINGARTNER, H., THOMPSON, K., BREIER, A., DORAN, A., RUBINOW, D. & PICKAAR, D. (1990) Cognitive effects of corticosteroids. American Journal of Psychiatry 147, 1297–1303.

    PubMed  Google Scholar 

  • YAU, J. L., OLSSON, T., MORRIS, R. G., MEANEY, M. J. & SECKL, J. R. (1995) Glucocorticoids, hippocampal corticosteroid receptor gene expression and antidepressant treatment: Relationship with spatial learning in young and aged rats. Neuroscience 66, 571–581.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gubba, E., Netherton, C. & Herbert, J. Endangerment of the brain by glucocorticoids: Experimental and clinical evidence. J Neurocytol 29, 439–449 (2000). https://doi.org/10.1023/A:1007177610378

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007177610378

Keywords

Navigation