Skip to main content
Log in

Analogous standard motifs in myelin basic protein and in MARCKS

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Myelin basic protein (MBP) and myristoylated alanine-rich C-kinase substrate (MARCKS) are similar in terms of having extended conformations regulated by their environment (i.e., solubilised or lipid-associated), N-terminal modifications, a dual nature of interactions with lipids, binding to actin and Ca2+-calmodulin, and being substrates for different kinds of protein kinases. The further sequence similarities of segments of MBP with lipid effector regions of MARCKS, and numerous reports in the literature, support the thesis that some developmental isoform of MBP functions in signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbuzova A, Murray D, McLaughlin S: MARCKS, membranes, and calmodulin: kinetics of their interaction. Biochim Biophys Acta 1376: 369-379, 1998

    Google Scholar 

  2. Aderem A: Signal transduction and the actin cytoskeleton: the roles of MARCKS and profilin. Trends Biochem Sci 17: 438-443, 1992

    Google Scholar 

  3. Aderem A: The MARCKS brothers: a family of protein kinase C substrates. Cell 71: 713-716, 1992

    Google Scholar 

  4. Aderem A: The MARCKS family of protein kinase-C substrates. Biochem Soc Trans 23: 587-591, 1995

    Google Scholar 

  5. Harlan DM, Graff JM, Stumpo DJ, Eddy RL Jr., Shows TB, Boyle JM, Blackshear PJ: The human myristoylated alanine-rich C kinase substrate (MARCKS) gene MACS. Analysis of its gene product, promoter, and chromosomal location. J Biol Chem 266: 14399-14405, 1991

    Google Scholar 

  6. Hartwig JH, Thelen M, Rosen A, Janmey PA, Nairn AC, Aderem A: MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 356: 618-622, 1992

    Google Scholar 

  7. Manenti S, Sorokine O, van Dorsselaer A, Taniguchi H: Affinity purification and characterization of myristoylated alanine-rich protein kinase C substrate (MARCKS) from bovine brain. Comparison of the cytoplasmic and the membrane-bound forms. J Biol Chem 267: 22310-22315, 1992

    Google Scholar 

  8. Arbuzova A, Wang J, Murray D, Jacob J, Cafiso DS, McLaughlin S: Kinetics of interaction of the myristoylated alanine-rich C kinase substrate, membranes, and calmodulin. J Biol Chem 272: 27167-27177, 1997

    Google Scholar 

  9. Bähr G, Diederich A, Vergères G, Winterhalter M: Interaction of the effector domain of MARCKS and MARCKS-related protein with lipid membranes revealed by electric potential measurements. Biochemistry 37: 16252-16261, 1998

    Google Scholar 

  10. Ramsden JJ, Vergères G: Nonelectrostatic contributions to the binding of MARCKS-related protein to lipid bilayers. Arch Biochem Biophys 371: 241-245, 1999

    Google Scholar 

  11. Murray D, Ben-Tal N, Honig B, McLaughlin S: Electrostatic interaction of myristoylated proteins with membranes: simple physics, complicated biology. Structure 5: 985-989, 1997

    Google Scholar 

  12. McLaughlin S, Aderem A: The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci 20: 272-276, 1995

    Google Scholar 

  13. Schleiff E, Schmitz A, McIlhinney RAJ, Manenti S, Vergéres G: Myristoylation does not modulate the properties if MARCKSrelated protein (MRP) in solution. J Biol Chem 271: 26794-26802, 1996

    Google Scholar 

  14. Takasaki A, Hayashi N, Matsubara M, Yamauchi E, Taniguchi H: Identification of the calmodulin-binding domain of neuron-specific protein kinase C substrate protein CAP-22/NAP-22. J Biol Chem 274: 11848-11853, 1999

    Google Scholar 

  15. Taniguchi H, Manenti S, Suzuki M, Titani K: Myristoylated alanine-rich C kinase substrate (MARCKS), a major protein kinase C substrate, is an in vivo substrate of proline-directed protein kinase(s). A mass spectroscopic analysis of the post-translational modifications. J Biol Chem 269: 18299-18302, 1994

    Google Scholar 

  16. Yamauchi E, Kiyonami R, Kanai M, Taniguchi H: The C-terminal conserved domain of MARCKS is phosphorylated in vivo by proline-directed protein kinase. Application of ion trap mass spectrometry to the determination of protein phosphorylation sites. J Biol Chem 273: 4367-4371, 1998

    Google Scholar 

  17. Ohmitsu M, Fukunaga K, Yamamoto H, Miyamoto E: Phosphorylation of myristoylated alanine-rich protein kinase C substrate by mitogen-activated protein kinase in cultured rat hippocampal neurons following stimulation of glutamate receptors. J Biol Chem 274: 408-417, 1999

    Google Scholar 

  18. Rhoads AR, Friedberg F: Sequence motifs for calmodulin recognition. FASEB J 11: 331-340, 1997

    Google Scholar 

  19. Kim J, Shishido T, Jiang X, Aderem A, McLaughlin S: Phosphorylation, high ionic strength, and calmodulin reverse the binding of MARCKS to phospholipid vesicles. J Biol Chem 269: 28214-28219, 1994

    Google Scholar 

  20. Allen LA, Aderem A: Protein kinase C regulates MARCKS cycling between the plasma membrane and lysosomes in fibroblasts. The EMBO J 14: 1109-1120, 1995

    Google Scholar 

  21. Myat MM, Anderson S, Allen LA, Aderem A: MARCKS regulates membrane ruffling and cell spreading. Curr Biol 7: 611-614, 1997

    Google Scholar 

  22. Asipu A, Blair GE: Regulation of transcription and translation in the central nervous system. In: W. Russell (ed.) The Molecular Biology of Multiple Sclerosis. Wiley, New York, 1997, pp 121-136

    Google Scholar 

  23. de Ferra F, Engh H, Hudson L, Kamholz J, Puckett C, Molineaux S, Lazzarini RA: Alternative splicing accounts for the four forms of myelin basic protein. Cell 43: 721-727, 1985

    Google Scholar 

  24. Campagnoni AT, Pribyl TM, Campagnoni CW, Kampf K, Amur-Umarjee S, Landry CF, Handley VW, Newman SL, Garbay B, Kitamura K: Structure and developmental regulation of Gollimbp, a 105-kilobase gene that encompasses the myelin basic protein gene and is expressed in cells in the oligodendrocyte lineage in the brain. J Biol Chem 268: 4930-4938, 1993

    Google Scholar 

  25. Pribyl TM, Campagnoni CW, Kampf K, Kashima T, Handley VW, McMahon J, Campagnoni AT: The human myelin basic protein gene is included within a 179-kilobase transcription unit: Expression in the immune and central nervous systems. Proc Natl Acad Sci USA 90: 10695-10699, 1993

    Google Scholar 

  26. Zopf D, Sonntag V, Betz H, Gundelfinger ED: Developmental accumulation and heterogeneity of myelin basic protein transcripts in the chick visual system. Glia 2: 241-249, 1989

    Google Scholar 

  27. Landry CF, Pribyl TM, Ellison JA, Givogri MI, Kampf K, Campagnoni CW, Campagnoni AT: Embryonic expression of the myelin basic protein gene: Identification of a promoter region that targets transgene expression to pioneer neurons. J Neurosci 18: 7315-7327, 1998

    Google Scholar 

  28. Kamholz J, Toffenetti J, Lazzarini RA: Structure and developmental regulation of Golli-MBP, a 105-kilobase gene that encompasses the myelin basic protein gene and is expressed in cells in the oligodendrocyte lineage in the brain. J Neurosci Res 21: 62-70, 1998

    Google Scholar 

  29. Palma AE, Owh P, Fredric C, Readhead C, Moscarello MA: Characterization of myelin basic protein charge microheterogeneity in developing mouse brain and in the transgenic shiverer mutant. J Neurochem 69: 1753-1762, 1997

    Google Scholar 

  30. Boccaccio GL, Carminatti H, Colman DR: Subcellular fractionation and association with the cytoskeleton of messengers encoding myelin proteins. J Neurosci Res 58: 480-491, 1999

    Google Scholar 

  31. Yamaguchi Y, Pfeiffer SE: Highly basic myelin and oligodendrocyte proteins analyzed by NEPHGE-two-dimensional gel electrophoresis: recognition of novel developmentally regulated proteins. J Neurosci Res 56: 199-205, 1999

    Google Scholar 

  32. Woodruff RH, Franklin RJ: The expression of myelin protein mRNAs during remyelination of lysolecithin-induced demyelination. Neuropathol Appl Neurobiol 25: 226-235, 1999

    Google Scholar 

  33. Moscarello MA: Myelin basic protein, the 'executive' molecule of the myelin membrane. In: B.H.J. Juurlink, R.M. Devon, J.R. Doucette, A.J. Nazarali, D.J. Schreyer, V.M.K. Verge (eds). Cell Biology and Pathology of Myelin: Evolving Biological Concepts and Therapeutic Approaches. Plenum, New York, 1997, pp 13-25

    Google Scholar 

  34. Wood DD, Moscarello MA: Molecular biology of the glia: components of myelin–Myelin basic protein–The implication of post-translational changes for demyelinating disease. In: W. Russell (ed.) The Molecular Biology of Multiple Sclerosis. Wiley, New York, 1997, pp 37-54

    Google Scholar 

  35. Wood DD, Moscarello MA: The isolation, characterization, and lipid-aggregating properties of a citrulline containing myelin basic protein. J Biol Chem 264: 5121-5127, 1989

    Google Scholar 

  36. Wood DD, Bilbao JM, O'Connors P, Moscarello MA: Acute multiple sclerosis (Marburg type) is associated with developmentally immature myelin basic protein. Ann Neurol 40: 18-24, 1996

    Google Scholar 

  37. Beniac DR, Wood DD, Palaniyar N, Ottensmeyer FP, Moscarello MA, Harauz G: Marburg's variant of multiple sclerosis correlates with a less compact structure of myelin basic protein. Mol Cell Biol Res Commun 1: 48-51, 1999

    Google Scholar 

  38. Cao L, Goodin R, Wood DD, Moscarello MA, Whitaker JH: Rapid release and unusual stability of immunodominant peptide 45–89 from citrullinated myelin basic protein. Biochemistry 38: 6157-6163, 1999

    Google Scholar 

  39. Boggs JM, Rangaraj G, Koshy KM, Ackerley C, Wood DD, Moscarello MA: Highly deiminated isoform of myelin basic protein isolated from multiple sclerosis brain causes fragmentation of lipid vesicles. J Neurosci Res 57: 529-535, 1999

    Google Scholar 

  40. Beniac DR, Wood DD, Palaniyar N, Ottensmeyer FP, Moscarello MA, Harauz G: Cryoelectron microscopy of protein-lipid complexes of human myelin basic protein charge isomers differing in degree of citrullination. J Struct Biol 129: 80-95, 2000

    Google Scholar 

  41. Ulmer JB: The phosphorylation of myelin proteins. Prog Neurobiol 31: 241-259, 1988

    Google Scholar 

  42. Ramwani J, Moscarello MA: Phosphorylation of charge isomers (components) of human myelin basic protein: identification of phosphorylated sites. J Neurochem 55: 1703-1710, 1990

    Google Scholar 

  43. Ramwani JJ, Epand RM, Moscarello MA: Secondary structure of charge isomers of myelin basic protein before and after phosphorylation. Biochemistry 28: 6538-6543, 1989

    Google Scholar 

  44. Deibler GE, Stone AL, Kies MW: Role of phosphorylation in conformational adaptability of bovine myelin basic protein. Proteins 7: 32-40, 1990

    Google Scholar 

  45. Moscarello MA, Brady GW, Fein DB, Wood DD, Cruz TF: The role of charge microheterogeneity of basic protein in the formation and maintenance of the multilayered structure of myelin: a possible role in multiple sclerosis. J Neurosci Res 15: 87-99, 1986

    Google Scholar 

  46. Staugaitis SM, Colman DR, Pedraza L: Membrane adhesion and other functions for the myelin basic proteins. BioEssays 18: 13-18, 1996

    Google Scholar 

  47. Beniac DR, Luckevich MD, Czarnota GJ, Tompkins TA, Ridsdale RA, Ottensmeyer FP, Moscarello MA, Harauz G: Threedimensional structure of myelin basic protein. I. Reconstruction via angular reconstitution of randomly oriented single particles. J Biol Chem 272: 4261-4268, 1997

    Google Scholar 

  48. Jo E, Boggs JM: Aggregation of acidic lipid vesicles by myelin basic protein: Dependence on potassium concentration. Biochemistry 34: 13705-13716, 1995

    Google Scholar 

  49. Boggs JM, Rangaraj G, Koshy KM: Analysis of the membrane-interacting domains of myelin basic protein by hydrophobic photolabeling. Biochim Biophys Acta 1417: 254-266, 1999

    Google Scholar 

  50. Polverini E, Fasano A, Zito F, Riccio P, Cavatorta P: Conformation of bovine myelin basic protein purified with bound lipids. Eur Biophys J 28: 351-355, 1999

    Google Scholar 

  51. Caamaño CA, ZR: Homologous sequences in cholera toxin A and B subunits to peptide domains in myelin basic protein. FEBS Lett 252: 88-90, 1989

    Google Scholar 

  52. Tzeng S-F, Deibler GE, Neuberger TJ, DeVries GH: Two mitogenic regions of myelin basic protein interact with different receptors to induce Schwann cell proliferation in a cAMP dependent process. J Neurosci Res 42: 758-767, 1995

    Google Scholar 

  53. Tzeng S-F, Deibler GE, DeVries GH: Myelin basic protein and myelin basic protein peptides induce the proliferation of Schwann cells via ganglioside GM1 and the FGF receptor. Neurochem Res 24: 255-260, 1999

    Google Scholar 

  54. Epand RM, Moscarello MA, Zierenberg B, Vail WJ: The folded conformation of the encephalitogenic protein of the human brain. Biochemistry 13: 1264-1267, 1974

    Google Scholar 

  55. MacNaughtan W, Snook KA, Caspi E, Franks NP: An X-ray diffraction analysis of oriented lipid multilayers containing basic proteins. Biochim Biophys Acta 818: 132-148, 1985

    Google Scholar 

  56. Afshar-Rad T, Bailey AI, Luckham PF, MacNaughtan W, Chapman D: Forces between proteins and model polypeptides adsorbed on mica surfaces. Biochim Biophys Acta 915: 101-111, 1987

    Google Scholar 

  57. Martenson RE: Prediction of the secondary structure of myelin basic protein. J Neurochem 36: 1543-1560, 1981

    Google Scholar 

  58. Stoner GL: Predicted folding of beta-structure in myelin basic protein. J Neurochem 43: 433-447, 1984

    Google Scholar 

  59. Martenson RE: Possible hydrophobic region in myelin basic protein consisting of an orthogonally packed beta-sheet. J Neurochem 46: 1612-1622, 1986

    Google Scholar 

  60. Stoner GL: Conservation throughout vertebrate evolution of the predicted beta-strands in myelin basic protein. J Neurochem 55: 1404-1411, 1990

    Google Scholar 

  61. Ridsdale RA, Beniac DR, Tompkins TA, Moscarello MA, Harauz G: Three-dimensional structure of myelin basic protein. II. Molecular modelling and considerations of predicted structures in multiple sclerosis. J Biol Chem 272: 4269-4275, 1997

    Google Scholar 

  62. Sędzik J, Blaurock AE, Höchli M: Lipid/myelin basic protein multilayers: A model for the cytoplasmic space in central nervous system myelin. J Mol Biol 174: 385-409, 1984

    Google Scholar 

  63. Smith KR, Pyrdol J, Gauthier L, Wiley DC, Wucherpfennig KW: Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein. J Exp Med 188: 1511-1520, 1998

    Google Scholar 

  64. Hofmann K, Bucher P, Falquet L, Bairoch A: The PROSITE database, its status in 1999. Nucl Acids Res 27: 215-219, 1999

    Google Scholar 

  65. Merritt EA, Kuhn P, Sarfaty S, Erbe JL, Holmes RK, Hol WG: The 1.25 Å resolution refinement of the cholera toxin B pentamer: evidence of peptide backbone strain at the receptorbinding site. J Mol Biol 282: 1043-1059, 1998

    Google Scholar 

  66. Boggs JM, Yip PM, Rangaraj G, Jo E: Effect of posttranslational modifications to myelin basic protein on its ability to aggregate acidic lipid vesicles. Biochemistry 36: 5065-5071, 1997

    Google Scholar 

  67. Moscarello MA, Pang H, Pace-Asciak CR, Wood DD: The N terminus of human myelin basic protein consists of C2, C4, C6, and C8 alkyl carboxylic acids. J Biol Chem 267: 9779-9782, 1992

    Google Scholar 

  68. Costentino M, Pritzker L, Boulias C, Moscarello MA: Acylation of myelin basic protein peptide 1–21 with alkyl carboxylates 2-10 carbons long affects secondary structure and posttranslational modification. Biochemistry 33: 4155-4162, 1994

    Google Scholar 

  69. Zhou S-R, Moscarello MA, Whitaker JN: The effects of citrullination or variable amino terminus acylation on the encephalitogenicity of human myelin basic protein on the PL/J mouse. J Neuroimmunol 62: 147-152, 1995

    Google Scholar 

  70. Mumby SM: Reversible palmitoylation of signalling proteins. Curr Opin Cell Biol 9: 148-154, 1997

    Google Scholar 

  71. Rudnick DA, McWherter CA, Gokel GW, Gordon JI: MyristoylCoA: protein N-myristoyltransferase. Adv Enzymol Relat Areas Mol Biol 67: 375-430, 1993

    Google Scholar 

  72. Hooper NM, McIlhinney, RAJ: Lipid modification of proteins. In: S.J. Higgins, B.D. Hames (eds). Post-Translational Processing. Oxford University Press, Oxford, 1999, pp. 175-203

    Google Scholar 

  73. Baryłko B, Dobrowolski Z: Ca2+-calmodulin-modulated regulation of F-actin–myelin basic protein interaction. Eur J Cell Biol 35: 327-335, 1984

    Google Scholar 

  74. Dobrowolski Z, Osinska H, Mossakowska M, Baryłko B: Ca2+-calmodulin-dependent polymerization of actin by myelin basic protein. Eur J Cell Biol 42: 17-26, 1986

    Google Scholar 

  75. Dobrowolski Z, Baryłko B, Drabikowski W: Interaction of tropomyosin with myelin basic protein and its effect on the ATPase activity of actomyosin. Eur J Cell Biol 41: 65-71, 1986

    Google Scholar 

  76. Modesti NM, Barra HS: The interaction of myelin basic protein with tubulin and the inhibition of tubulin carboxypeptidase activity. Biochem Biophys Res Commun 136: 482-489, 1986

    Google Scholar 

  77. Pirollet F, Derancourt J, Haiech J, Job D, Margolis RL: Ca2+-calmodulin regulated effectors of microtubule stability in bovine brain. Biochemistry 31: 8849-8855, 1992

    Google Scholar 

  78. Prasad K, Barouch W, Martin BM, Greene LE, Eisenberg E: Purification of a new clathrin assembly protein from bovine brain and its identification as myelin basic protein. J Biol Chem 270: 30551-30556, 1995

    Google Scholar 

  79. Karthigasan J, Inouye H, Kirschner DA: Implications of the sequence similarities between tau and myelin basic protein. Med Hypoth 45: 235-240, 1995

    Google Scholar 

  80. Dyer CA, Benjamins JA: Organization of oligodendroglial membrane sheets. I: Association of myelin basic protein and 2′3′-cyclic nucleotide 3′phosphohydrolase with cytoskeleton. J Neurosci Res 24: 201-211, 1989

    Google Scholar 

  81. Dyer CA, Benjamins JA: Organization of oligodendroglial membrane sheets. II: Galactocerebroside:antibody interactions signal changes in cytoskeleton and myelin basic protein. J Neurosci Res 24: 212-221, 1989

    Google Scholar 

  82. De Angelis DA, Braun PE: Binding of 2′3′-cyclic nucleotide 3′phosphodiesterase to myelin: an in vitro study. J Neurochem 66: 2523-2531, 1996

    Google Scholar 

  83. De Angelis DA, Braun PE: 2′3′-cyclic nucleotide 3′phosphodiesterase binds to actin-based cytoskeletal elements in an isoprenylation-independent manner. J Neurochem 67: 943-951, 1996

    Google Scholar 

  84. Dyer CA, Philibotte TM, Wolf MK, Billings-Gagliardi S: Myelin basic protein mediates extracellular signals that regulate microtubule stability in oligodendrocyte membrane sheets. J Neurosci Res 39: 97-107, 1994

    Google Scholar 

  85. Dyer CA, Philibotte TM, Billings-Gagliardi S, Wolf MK: Cytoskeleton in myelin-basic-protein-deficient shiverer oligodendrocytes. Dev Neurosci 17: 53-62, 1995

    Google Scholar 

  86. Dyer CA, Phillbotte T, Wolf MK, Billings-Gagliardi S: Regulation of cytoskeleton by myelin components: studies on shiverer oligodendrocytes carrying an Mbp transgene. Dev Neurosci 19: 395-409, 1997

    Google Scholar 

  87. Yin X, Peterson J, Gravel M, Braun PE, Trapp BD: CNP overexpression induces aberrant oligodendrocyte membranes and inhibits MBP accumulation and myelin compaction. J Neurosci Res 50: 238-247, 1997

    Google Scholar 

  88. Shpetner HS, Vallee RB: Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59: 421-432, 1989

    Google Scholar 

  89. Hinshaw JE: Dynamin spirals. Curr Opin Struct Biol 9: 260-267, 1999

    Google Scholar 

  90. Ursell MR, McLaurin J, Wood DD, Ackerley CA, Moscarello MA: Localization and partial characterization of a 60 kDa citrulline-containing transport form of myelin basic protein from MO3-13 cells and human white matter. J Neurosci Res 42: 41-53, 1995

    Google Scholar 

  91. Pedraza L, Fidler L, Staugaitis SM, Colman DR: The active transport of myelin basic protein into the nucleus suggests a regulatory role in myelination. Neuron 16: 579-589, 1997

    Google Scholar 

  92. Grand RJA, Perry SV: The binding of calmodulin to myelin basic protein and histone H2B. Biochem J 189: 227-240, 1980

    Google Scholar 

  93. Iwasa Y, Iwasa T, Matsui K, Higashi K, Miyamoto E: Interaction of calmodulin with chromatin associated proteins and myelin basic protein. Life Sci 29: 1369-1377, 1981

    Google Scholar 

  94. Chan K-FJ, Robb ND, Chen WH: Myelin basic protein: interaction with calmodulin and gangliosides. J Neurosci Res 25: 535-544, 1990

    Google Scholar 

  95. Arnold M, Ringler P, Brisson A: A quantitative electrophoretic migration shift assay for analyzing the specific binding of proteins to lipid ligands in vesicles or micelles. Biochim Biophys Acta 1233: 198-204, 1995

    Google Scholar 

  96. LaPorte DC, Wierman BM, Storm DR: Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry 19: 3814-3819, 1980

    Google Scholar 

  97. Zhang M, Tanaka T, Ikura M: Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nature Struct Biol 2: 758-767, 1995

    Google Scholar 

  98. Cox JA: Calcium-calmodulin interaction and cellular function. J Cardiovasc Pharmacol 8(suppl 8): S48-S51, 1986

  99. Knott R, Hansen S, Henderson S: A small angle X-ray scattering study of the binding of cyclosporin-A to calmodulin. J Struct Biol 112: 192-198, 1994

    Google Scholar 

  100. Porumb T, Crivici A, Blackshear PJ, Ikura M: Calcium binding and conformational properties of calmodulin complexed with peptides derived from myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP). Eur Biophys J 25: 239-247, 1997

    Google Scholar 

  101. Roth GA, Gonzalez MD, Monferran CG, DeSantis ML, Cumar FA: Myelin basic protein domains involved in the interaction with actin. Neurochem Int 23: 459-465, 1993

    Google Scholar 

  102. Crivici A, Ikura M: Molecular and structural basis of target recognition by calmodulin. Ann Rev Biophys Biomol Struct 24, 85-116, 1995

    Google Scholar 

  103. Matsubara M, Hayashi N, Titani K, Taniguchi H: Circular dichroism and 1H NMR studies on the structures of peptides derived from the calmodulin-binding domains of indicuble and endothelial nitric-oxide synthase in solution and in complex with calmodulin. Nascent α-helical structures are stabilized by calmodulin both in the presence and absence of Ca2+. J Biol Chem 272: 23050-23056, 1997

    Google Scholar 

  104. Solà C, Tusell JM, Serratosa J: Comparative study of the distribution of calmodulin kinase II and calcineurin in the mouse brain. J Neurosci Res 57: 651-662, 1999

    Google Scholar 

  105. Imparl JM, Senshu T, Graves DJ: Studies of calcineurin-calmodulin interaction: Probing the role of arginine residues using peptidylarginine deiminase. Arch Biochem Biophys 318: 370-377, 1995

    Google Scholar 

  106. Lemmon MA, Ferguson KM, Schlessinger J: PH Domains: Diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85: 621-624, 1996

    Google Scholar 

  107. Rebecchi MJ, Scarlata S: Pleckstrin homology domains: a common fold with diverse functions. Ann Rev Biophys Biomol Struct 27: 503-528, 1998

    Google Scholar 

  108. Bottomley MJ, Salim K, Panayatou G: Phospholipid-binding protein domains. Biochim Biophys Acta 1436: 165-183, 1998

    Google Scholar 

  109. Pawson T: Protein modules and signalling networks. Nature 373: 573-580, 1995

    Google Scholar 

  110. Erickson AK, Payne DM, Martino PA, Rossomondo AJ, Shabanowitz J, Weber MJ, Hunt, DF, Sturgill TW: Identification by mass spectrometry of threonine 97 in bovine myelin basic protein as a specific phosphorylation site for mitogen-activated protein kinase. J Biol Chem 32: 19728-19735, 1990

    Google Scholar 

  111. Yon M, Ackerley CA, Mastronardi FG, Groome N, Moscarello MA: Identification of a mitogen-activated protein kinase site in human myelin basic protein in situ. J Neuroimmunol 65: 55-59, 1996

    Google Scholar 

  112. Clark R, Stewart M, Miskimins WK, Miskimins R: Involvement of MAP kinase in the cyclic AMP induction of myelin basic protein gene expression. Int J Dev Neurosci 16: 323-331, 1998

    Google Scholar 

  113. Chan CK, Ramwani J, Moscarello MA: Myelin basic protein binds GTP at a single site in the N-terminus. Biochem Biophys Res Commun 152: 1468-1473, 1987

    Google Scholar 

  114. Braun PE, Horvath E, Yong VW, Bernier L: Identification of GTP-binding proteins in myelin and oligodendrocyte membranes. J Neurosci Res 26: 16-23, 1990

    Google Scholar 

  115. Burcelin R, Rodriguez-Gabin AG, Charron MJ, Almazan G, Larocca JN: Molecular analysis of the monomeric GTP-binding proteins of oligodendrocytes. Brain Res Mol Brain Res 50: 9-15, 1997

    Google Scholar 

  116. Rodriguez-Gabin AG, Farooq M, Norton WT, Larocca JN: Study of the interaction of the myelin monomeric GTP-binding proteins with other brain proteins. J Neurochem 68: 1011-1020, 1997

    Google Scholar 

  117. Tompkins TA: A 57-kDa phosphatidylinositol-specific phospholipase C from bovine brain. J Biol Chem 266: 4228-4236, 1991

    Google Scholar 

  118. Tompkins TA: Stimulation of bovine brain phospholipase C activity by myelin basic protein requires arginyl residues in peptide linkage. Arch Biochem Biophys 302: 476-483, 1993

    Google Scholar 

  119. Tompkins TA, Moscarello MA: The mechanism of stimulation of brain phospholipase C-alpha by myelin basic protein involves specific interactions. Biochim Biophys Acta 1206: 208-214, 1994

    Google Scholar 

  120. Dyer CA: Myelin proteins as mediators of signal transduction. In: B.H.J. Juurlink, R.M. Devon, J.R. Doucette, A.J. Nazarali, D.J. Schreyer, V.M.K. Verge (eds.). Cell Biology and Pathology of Myelin: Evolving Biological Concepts and Therapeutic Approaches. Plenum, New York, 1997, pp 69-74

    Google Scholar 

  121. Boggs JM, Rangaraj G, Koshy KM, Mueller JP: Adhesion of acidic lipid vesicles by 21.5 kDa (recombinant) and 18.5 kDa isoforms of myelin basic protein. Biochim Biophys Acta 1463: 81-87, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harauz, G., Ishiyama, N. & Bates, I. Analogous standard motifs in myelin basic protein and in MARCKS. Mol Cell Biochem 209, 155–163 (2000). https://doi.org/10.1023/A:1007176216360

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007176216360

Navigation