Skip to main content
Log in

The Relation Between Changes in Non-Photochemical Quenching, Low Temperature Fluorescence Emission, and Membrane Ultrastructure Upon Binding of Polyionic Compounds and Fragments of Light-Harvesting Complex 2

  • Published:
Photosynthetica

Abstract

Experiments were performed to distinguish some of the proposed mechanisms by which thylakoid membranes regulate the performance of photosynthetic apparatus in relation to non-photochemical quenching, qN. Aliphatic diamines were used as uncouplers of transmembrane H+ gradient as they can be transported across the membrane at the expense of hydrogen cations. Diamines did not induce changes in low-temperature fluorescence emission but induced different changes in membrane ultrastructure. Positively charged peptides did not affect membrane ultrastructure but blocked qN. In addition, they caused an increase of low temperature fluorescence emission between 710 and 720 nm. For control peptide, the maximal fluorescence increase was found at 715 nm. Fragments of light-harvesting complex 2 in their phosphorylated and non-phosphorylated form shifted the position of this increase. We believe that peptides bind to membrane surface and reduce the mobility of membrane components whose migration is needed for observation of qN. Phosphorylated and non-phosphophorylated LHC2 fragments bind to different binding sites for corresponding forms of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J.F.: Protein phosphorylation in regulation of photosynthesis.-Biochim. biophys. Acta 1098: 275-335, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Barany, G., Merrifield, R.B.: Special methods in peptide synthesis.-In: Gross, E., Meienhofer, J. (ed.): The Peptides. Vol. 2. Pp. 1-284. Academic Press, New York 1980.

    Google Scholar 

  • Bennett, J.: Phosphorylation of chloroplast membrane polypeptides.-Nature 269: 344-346, 1977.

    Article  CAS  Google Scholar 

  • Berg, S., Dodge, S., Krogmann, D.W., Dilley, R.A.: Chloroplast grana membrane carboxyl groups. Their involvement in membrane association.-Plant Physiol. 53: 619-627, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Briantais, J.-M., Vernotte, C., Picaud, M., Krause, G.H.: A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts.-Biochim. biophys. Acta 548: 128-138, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Burke, J.J., Ditto, C.L., Arntzen, C.J.: Involvement of the light-harvesting complex in cation regulation of excitation energy distribution in chloroplasts.-Arch. Biochem. Biophys. 187: 252-263, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, L., Spangfort, M.D., Allen, J.F.: Substrate specificity and kinetics of thylakoid phosphoprotein phosphatase reaction.-Biochim. biophys. Acta 1188: 151-157, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Crofts, A.R., Yerkes, C.T.: A molecular mechanism for qE-quenching.-FEBS Lett. 352: 265-270, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Gilmore, A.M.: Mechanistic aspects of xantophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves.-Physiol. Plant. 99: 197-200, 1997.

    Article  CAS  Google Scholar 

  • Grehn, I., Fransson, B., Ragnarsson, U.: Synthesis of substrates of cyclic AMP-dependent kinase and use of their precursors for convenient preparation of phosphoserine peptides.-J. chem. Soc. Perkin Elmer I 1987: 529-535, 1987.

    Article  Google Scholar 

  • Gulbrand, L., Jönsson, B., Wennerström, H., Linse, P.: Electrical double layer forces.-J. chem. Phys. 80: 2221-2228, 1984.

    Article  Google Scholar 

  • Hager, A.: Die Zusammenhänge zwischen lichtinduzierten Xanthophyll-Umwandlungen und Hill Reaktion.-Ber. deutsch. bot. Gesell. 79: 94-107, 1966.

    CAS  Google Scholar 

  • Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991.

    Article  CAS  Google Scholar 

  • Krieger, A., Weis, E.: Energy-dependent quenching of chlorophyll-a-fluorescence: The involvement of proton-calcium exchange at photosystem 2.-Photosynthetica 27: 89-98, 1992.

    CAS  Google Scholar 

  • Portis, A.R., McCarty, R.E.: Quantitative relationships between phosphorylation, electron flow, and internal hydrogen ion concentrations in spinach chloroplasts.-J. biol. Chem. 251: 1610-1617, 1976.

    PubMed  CAS  Google Scholar 

  • Rintamäkki, E., Salonen, M., Suoranta, U.M., Carlberg, I., Andersson, B., Aro, E.M.: Phosphorylation of light-harvesting complex II and photosystem II core proteins show different irradiance-dependent regulation in vivo. Application of phosphothreonine antibodies to analysis of thylakoid phosphoproteins.-J. biol. Chem. 272: 30476-30482, 1997.

    Article  Google Scholar 

  • Ruban, A.V., Rees, D., Pascal, A.A., Horton, P.: Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. II. The relationship between LHCII aggregation in vitro and qE in isolated thylakoids.-Biochim. biophys. Acta 1102: 39-44, 1992.

    Article  CAS  Google Scholar 

  • Ruban, A.V., Young, A.J., Horton, P.: Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photprotective energy dissipation in the photosynthetic membrane of green plants.-Biochemistry 35: 674-678, 1996

    Article  PubMed  CAS  Google Scholar 

  • Sackmann, E.: Molecular and global structure and dynamics of membranes and lipid bilayers.-Can. J. Phys. 68: 999-1012, 1990.

    CAS  Google Scholar 

  • Schreiber, U.: Chlorophyll fluorescence yield changes as a tool in plant physiology. I. The measuring system.-Photosynth. Res. 4: 361-373, 1983.

    CAS  Google Scholar 

  • Stys, D., Stancek, M., Cheng, L., Allen, J.F.: Complex formation in plant thylakoid membranes. Competition studies on membrane protein interactions using synthetic peptide fragments.-Photosynth. Res. 44: 277-285, 1995.

    Article  CAS  Google Scholar 

  • Wollenberger, L., Weibull, C., Albertsson, P.-Å.: Further characterization of the chloroplast grana margins: the non-detergent preparation of granal Photosystem I cannot reduce ferredoxin in the absence of NADP+ reduction.-Biochim. biophys. Acta 1230: 10-22, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Štys, D., Šiffel, P., Hunalová, I. et al. The Relation Between Changes in Non-Photochemical Quenching, Low Temperature Fluorescence Emission, and Membrane Ultrastructure Upon Binding of Polyionic Compounds and Fragments of Light-Harvesting Complex 2. Photosynthetica 37, 325–334 (1999). https://doi.org/10.1023/A:1007172408839

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007172408839

Navigation