Skip to main content
Log in

Calculation of the Heat Capacity of Oxide Glasses at Temperatures from 100 K to the Lower Boundary of Glass Transition Range

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A method for calculating the heat capacity of oxide glasses from the data on their composition and temperature has been proposed. Thirty two oxides are included in calculations. A new empirical equation that describes the temperature dependence of the heat capacity is used in the calculations. This equation makes it possible to interpolate the experimental data over a wide range of temperatures (from 100 K to the lower boundary of the glass transition range) and involves only one fitting parameter. The atomic additive formula is applied to the calculation of the heat capacity from the glass composition. The results of calculations are compared with the data available in the literature on the heat capacity for ∼500 glasses with the use of the SciGlass information system describing the glass properties. The root-mean-square deviations of the calculated data from the experimental results are equal to 5–7%. The method proposed is highly competitive in accuracy with the known techniques for calculating the heat capacity of glasses and allows one to extend considerably the composition and temperature ranges covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Stebbins, J.F., Carmichael, I.S.E., and Moret, L.K., Heat Capacities and Entropies of Silicate Liquids and Glasses, Contrib. Mineral. Petrol., 1984, vol. 86, pp. 131–148.

    Google Scholar 

  2. Moore, J. and Sharp, D.E., Note on Calculation of Effect of Temperature and Composition on Specific Heat of Glass, J. Am. Ceram. Soc., 1958, vol. 41, no. 11, pp. 35–37.

    Google Scholar 

  3. Winkelmann, A., Ñber die specifischen Warmen verschieden zusammengesetzter Gläser, Ann. Phys. Chem., 1893, vol. 49, pp. 401–420.

    Google Scholar 

  4. SciGlass (Glass Property Information System), Version 3.5, Lexington, MA: SciVision, 1998.

  5. Schnaus, U.E., Moynihan, C.T., Gammon, R.W., and Macedo, P.B., The Relation of the Glass Transition Temperature to Vibrational Characteristics of Network Glasses, Phys. Chem. Glasses, 1970, vol. 11, no. 6, pp. 213–218.

    Google Scholar 

  6. Casey, D.N., Hetherington, G., Winterburn, J.A., and Yates, B., The Influence of the Hydroxyl Content upon the Specific Heat Capacity of Vitreous Silica at Elevated Temperatures, Phys. Chem. Glasses, 1976, vol. 17, no. 3, pp. 77–82.

    Google Scholar 

  7. Robie, R.A., Hemingway, B.S., and Wilson, W.H., Low-Temperature Heat Capacities and Entropies of Feldspar Glasses and Anorthite, Am. Mineral., 1978, vol. 63, nos. 1–2, pp. 109–123.

    Google Scholar 

  8. Richet, P., Robie, R.A., and Hemingway, B.S., Low-Temperature Heat Capacity of Diopside Glass (CaMgSi2O6): A Calorimetric Test of the Configurational Entropy Theory Applied to the Viscosity of Liquid Silicates, Geochim. Cosmochim. Acta, 1986, vol. 50, no. 7, pp. 1521–1533.

    Google Scholar 

  9. Hirao, K. and Soga, N., Heat Capacity and Chemical Bond Strength of Oxide Glasses, J. Ceram. Soc. Jpn., 1989, vol. 97, no. 3, pp. 359–364.

    Google Scholar 

  10. El-Sharkawy, A.A., Sanad, A.M., Kashif, I., Kenawy, M.I., and Osman, M.B., Thermal Properties of Barium-Borate Glasses Containing Iron in the Temperature Interval 300 to 700 K, J. Mater. Sci. Lett., 1985, vol. 4, no. 1, pp. 48–50.

    Google Scholar 

  11. Thomas, S.B. and Parks, G.S., Studies of Glass: VI. Some Specific Heat Data on Boron Trioxide, J. Phys. Chem., 1931, vol. 35, no. 7, pp. 2091–2102.

    Google Scholar 

  12. Tarasov, V.V. and Soboleva, P.A., Heat Capacity of Vitreous GeO2 and Glasses in the K2O–GeO2 System, Zh. Fiz. Khim., 1970, vol. 44, no. 6, pp. 1590–1592.

    Google Scholar 

  13. Vasil'ev, L.L., Methods and Instruments for Determination of the Thermal Properties of Insulator Materials in the Range 80–500 K, Inzh.–Fiz. Zh., 1964, vol. 7, no. 5, pp. 76–84.

    Google Scholar 

  14. Muratov, A.V. and Postnikov, V.S., Specific Heat Capacity and Thermal Conductivity Coefficient of Glasses and Glass-Ceramics in the Low-Temperature Range, Fiz. Khim. Obrab. Mater., 1978, no. 5, pp. 137–140.

    Google Scholar 

  15. Muratov, A.V., Investigation of the Heat Capacity of Silicate Glasses at Low Temperatures, Fiz. Khim. Stekla, 1978, vol. 4, no. 6, pp. 741–743.

    Google Scholar 

  16. Richet, P., Bottinga, Y., Denielou, L., Petitet, J.P., and Tequi, C., Thermodynamic Properties of Quartz, Cristobalite and Amorphous SiO2: Drop Calorimetry Measurements between 1000 and 1800 K and a Review from 0 to 2000 K, Geochim. Cosmochim. Acta, 1982, vol. 46, no. 12, pp. 2639–2658.

    Google Scholar 

  17. Sosman, R.B., The Properties of Silica, New York: Chem. Catalog Co., 1927.

    Google Scholar 

  18. Yageman, V.D. and Matveev, G.M., Heat Capacity of Glasses in the SiO2–Na2O · 2SiO2 System, Fiz. Khim. Stekla, 1982, vol. 8, no. 2, pp. 238–245.

    Google Scholar 

  19. Fischer, W., Schmelzwärmen und Molekularwärmen von Aluminiumhalogeniden, Z. Anorg. Allg. Chem., 1931, vol. 200, no. 4, pp. 332–342.

    Google Scholar 

  20. Frenkel', I.M., Sergeev, O.A., and Boitsov, A.A., Investigation of the Heat Capacity of Corundum and Silica Glass with the State Primary Standard, Tr. Metrol. Inst. SSSR, 1978, no. 216, pp. 32–37.

    Google Scholar 

  21. Tarasov, V.V., Turdakin, V.A., Yunitskii, G.A., and Zhdanov, V.M., A Study of Microchemical Inhomogeneity in Sodium Silicate and Sodium Borosilicate Glasses on the Basis of Low-Temperature Heat Capacity, Zh. Fiz. Khim., 1967, vol. 41, no. 2, pp. 430–434.

    Google Scholar 

  22. Tarasov, V.V. and Turdakin, V.A., Specific Heat Capacity and Thermal Conductivity Coefficient of Glasses and Glass-Ceramics in the Low-Temperature Range, in Mekhanicheskie i teplovye svoistva i stroenie neorganicheskikh stekol (Mechanical and Thermal Properties and Structure of Inorganic Glasses), Moscow, 1972, pp. 137–140.

  23. Khidasheli, A.N., Avaliani, D.I., Beroshvili, A.I., Makarov, V.N., and Chkhaidze, B.Sh., Experimental Investigation of the Thermal Properties of Silica Glass, Tr. Gruz. Politekh. Inst., 1971, no. 3, pp. 230–237.

    Google Scholar 

  24. Kovryanov, A.I. and Chashkin, Yu.R., Heat Capacity of KV Silica Glass in the Temperature Range 80–300 K, Metrol. Tochn. Izmer., 1981, no. 8, pp. 20–26.

    Google Scholar 

  25. Alekseenko, M.P., Heat Conductivity, Thermal Diffusivity, and Specific Heat Capacity of Optical Materials, Opt.–Mekh. Prom-st., 1962, no. 10, pp. 11–19.

    Google Scholar 

  26. Mamedov, K.K., Abdullaev, A.B., Shalumov, B.Z., Mekhtiev, M.I., Alyanov, M.A., and Gumbatov, D.O., Low-Temperature Heat Capacity and Thermodynamic Properties of Silicon-Dioxide–Based Binary Vitreous Systems, Phys. Status Solidi A, 1987, vol. 99, no. 2, pp. 413–421.

    Google Scholar 

  27. Aliev, N.N., Abdulaev, A.B., Shalumov, B.Z., and D'yakonov, S.S., Concentration Dependences of Binary Glasses Based on Silicon Dioxide at Low Temperatures, Izv. Akad. Nauk SSSR, Neorg. Mater., 1988, vol. 24, no. 1, pp. 124–132.

    Google Scholar 

  28. Hirao, K., Soga, N., and Kunugi, M., Low-Temperature Heat Capacity and Structure of Alkali Silicate Glasses, J. Am. Ceram. Soc., 1979, vol. 62, nos. 11–12, pp. 570–573.

    Google Scholar 

  29. Muratov, A.V. and Postnikov, V.S., Specific Heat Capacity and Thermal Conductivity Coefficient of Glasses and Glass-Ceramics in the Low Temperature Range, Fiz. Khim. Obrab. Mater., 1978, no. 5, pp. 137–140.

    Google Scholar 

  30. Muratov, A.V., A Study of the Heat Capacity of Silicate Glasses at Low Temperatures, Fiz. Khim. Stekla, 1978, vol. 4, no. 6, pp. 741–743.

    Google Scholar 

  31. Nemilov, S.V. and Muratov, A.V., Heat Capacity and Excess Thermodynamic Functions for Vitreous Na2O · 2SiO2 and Na2O · SiO2 at Absolute Zero in Relation to the Structure of Sodium Silicate Glasses, Fiz. Khim. Stekla, 1983, vol. 9, no. 5, pp. 589–599.

    Google Scholar 

  32. Rathmann, C.L., Mann, G.H., and Nordberg, M.E., A New Ultralow-Expansion of Modified Fused-Silica Glass, Appl. Opt., 1968, vol. 7, no. 5, pp. 819–824.

    Google Scholar 

  33. Shultz, M.M., Ushakov, V.M., and Borisova, N.V., Investigation of Vitreous and Crystalline Sodium Silicates by Differential Scanning Calorimetry, Dokl. Akad. Nauk SSSR, 1984, vol. 274, no. 4, pp. 865–867.

    Google Scholar 

  34. Shultz, M.M., Ushakov, V.M., and Borisova, N.V., A Comparative Study of the Thermodynamic Properties of Sodium Silicate Glasses and Crystals, Dokl. Akad. Nauk SSSR, 1985, vol. 283, no. 1, pp. 179–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalimovskaya-Churkina, S.A., Priven, A.I. Calculation of the Heat Capacity of Oxide Glasses at Temperatures from 100 K to the Lower Boundary of Glass Transition Range. Glass Physics and Chemistry 26, 531–540 (2000). https://doi.org/10.1023/A:1007144029394

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007144029394

Keywords

Navigation