Skip to main content
Log in

Syntheses of α-dystroglycan derived glycosyl amino acids carrying a novel mannosyl serine/threonine linkage

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

α-Dystroglycan (α-DG) is a membrane-associated, extracellular glycoprotein. It is anchored to the cell-membrane by binding to the transmembrane glycoprotein β-dystroglycan (β-DG) to form an α/β-DG-complex. It was discovered that the bovine peripheral nerve α-DG possesses the Ser/Thr linked tetrasaccharide as the major constituent of the O-linked carbohydrates, which was proposed to contribute laminin binding activity of this glycoprotein.

This structure has a striking feature in terms of the mode of linkage between oligosaccharide and the core protein. It has a mannose residue linked to the core protein through Ser/Thr residue. A similar structure was proposed to exist in brain derived HNK-1 immunoreactive O-glycans. Being interested in the structural novelty and potential biological significance of this type of glycan chains, the chemical synthesis of Ser/Thr linked mannose containing tetrasaccharide was investigated. Tetrasaccharide donor was constructed from monosaccharide blocks and coupled with Ser/Thr derivatives. Subsequent deprotection afforded target tetraosyl serine. Furthermore, synthetic routes to lower homologues, namely Gal-β-(1,4)-GlcNAc-β-(1,2)-Man-α-Ser and GlcNAc-β-(1,2)-Man-α-Ser were also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chiba A, Matsumura K, Yamada H, Inazu T, Shimizu T, Kusunoki S, Kanazawa I, Kobata A, Endo T, J Biol Chem 272, 2156–62 (1997) and references cited therein.

    Google Scholar 

  2. Matsumura K, Chiba A, Yamada H, Fukuta-Ohi H, Fujita S, Endo T, Kobata A, Anderson LVB, Kanazawa I, Campbell KP, Shimizu T, J Biol Chem 272, 13904–10 (1997).

    Google Scholar 

  3. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP, Nature 355, 696–702 (1992).

    Google Scholar 

  4. Campbell KP, Cell 80, 675–9 (1995).

    Google Scholar 

  5. Endo T, Biochim Biophys Acta 1473, 237–46 (1999).

    Google Scholar 

  6. Yuen CT, Chai W, Loveless W, Lawson AM, Margolis RU, Feizi T, J Biol Chem 272, 8924–31 (1997).

    Google Scholar 

  7. Seifert J, Ogawa T, Ito Y, Tetrahedron Lett 40, 6803–07 (1999).

    Google Scholar 

  8. Gentzsch M, Tanner W, Glycobiology 7, 481–6 (1997).

    Google Scholar 

  9. Schmidt RR, Kinzy W, Adv Carbohydr Chem Biochem 50, 21–123 (1994).

    Google Scholar 

  10. Seifert J, Lergenmüller M, Ito Y, Angew Chem Int Ed Engl 39, 531–4 (2000).

    Google Scholar 

  11. Dekany G, Wright K, Toth I, J Carbohydr Chem 16, 983–99 (1997).

    Google Scholar 

  12. Hummel G, Schmidt RR, Tetrahedron Lett 38, 1173–6 (1997).

    Google Scholar 

  13. Nagahama T, Ohki H, Hotta K, Ishida H, Kiso M, Hasegawa A, J Carbohydr Chem 10, 493–8 (1991).

    Google Scholar 

  14. Veeneman GH, van Boom JH, Tetrahedron Lett 31, 275–8 (1990).

    Google Scholar 

  15. Veeneman GH, van Leeuwen JH, van Boom JH, Tetrahedron Lett 31, 1331–34 (1990).

    Google Scholar 

  16. Konradsson P, Udodong UE, Fraser-Reid B, Tetrahedron Lett 31, 4313–6 (1990).

    Google Scholar 

  17. Unversagt C, Angew Chem Int Ed Engl 33, 1102–4 (1994).

    Google Scholar 

  18. Wolfrom ML, Thompson A, Methods Carbohydr Chem 2, 211 (1963).

    Google Scholar 

  19. Kanie O, Crawley SC, Palcic MM, Hindsgaul O, Carbohydr Res 243, 139–64 (1993).

    Google Scholar 

  20. Vasella A, Witzig C, Chiara JL, Martin-Lomas M, Helv Chim Acta 74, 2073–7 (1991).

    Google Scholar 

  21. Bayley H, Standring DN, Knowles JR, Tetrahedron Lett 39, 3633–4 (1978).

    Google Scholar 

  22. Schultz M, Kunz H, Tetrahedron Asymmetry 4, 1205–20 (1993).

    Google Scholar 

  23. Green M, Berman J, Tetrahedron Lett 31, 5851–2 (1990).

    Google Scholar 

  24. de la Torre BG, Torres JL, Bardaji E, Clapes P, Xaus N, Jorba X, Calvet S, Albericio F, Valentia G, J Chem Soc Chem Commun 965–7 (1990).

  25. Matsuo I, Isomura M, Ajisaka K, Tetrahedron Lett 40, 5047–50 (1999).

    Google Scholar 

  26. Ito Y, Ogawa T, Angew Chem Int Ed Engl 33, 1765–7 (1994).

    Google Scholar 

  27. de la Torre BG, Torres JL, Bardaji E, Clapes P, Xaus N, Jorba X, Calvet S, Albericio F, Valentia G, J Chem Soc Chem commun 965–7 (1990).

  28. Ciommer M, Kunz H, Synlett 593–5 (1991).

  29. Mukaiyama T, Murai Y, Shoda S, Chem Lett 431–2 (1981).

  30. Johansson R, Samuelsson B, J Chem Soc Chem Commun 201–2 (1984).

  31. Braccini I, Derouet C, Esnault J, Hervé du Penhoat C, Mallet J-M, Michon V, Sinaÿ P, Carbohydr Res 246, 23–41 (1993).

    Google Scholar 

  32. Dan A, Lergenmüller M, Amano M, Nakahara Y, Ogawa T, Ito Y, Chem Eur J 4, 2182–90 (1998).

    Google Scholar 

  33. Ito Y, Ohnishi Y, Ogawa T, Nakahara Y, Synlett 1102–4 (1998).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifert, J., Ogawa, T., Kurono, S. et al. Syntheses of α-dystroglycan derived glycosyl amino acids carrying a novel mannosyl serine/threonine linkage. Glycoconj J 17, 407–423 (2000). https://doi.org/10.1023/A:1007112232131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007112232131

Navigation