Skip to main content
Log in

Influence of glucose on production and N-sulfation of heparan sulfate in cultured adipocyte cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Altered lipoprotein lipase regulation associated with diabetes leading to the development of hypertriglyceridemia might be attributed to possible changes in content and the fine structure of heparan sulfate and its associated lipoprotein lipase. Adipocyte cell surface is the primary site of synthesis of lipoprotein lipase and the enzyme is bound to cell surface heparan sulfate proteoglycans via heparan sulfate side chains. In this study, the effect of diabetes on the production of adipocyte heparan sulfate and its sulfation (especially N-sulfation) were examined. Mouse 3T3-L1 adipocytes were exposed to high glucose (25 mM) and low glucose (5.55 mM) in the medium and cell-associated heparan sulfate was isolated and characterized. A significant decrease in total content of heparan sulfate was observed in adipocytes cultured under high glucose as compared to low glucose conditions. The degree of N-sulfation was assessed through oligosaccharide mapping of heparan sulfate after chemical cleavages involving low pH (1.5) nitrous acid and hydrazinolysis/high pH (4.0) nitrous acid treatments; N-sulfation was found to be comparable between the adipocyte heparan sulfates produced under these glucose conditions. The activity and message levels for N-deacetylase/N-sulfotransferase, the enzyme responsible for N-sulfation in the biosynthesis of heparan sulfate, did not vary in adipocytes whether they were exposed to low or high glucose. While most cells or tissues in diabetic situations produce heparan sulfate with low-charge density concomitant with a decrease in N-sulfation, adipocyte cell system is an exception in this regard. Heparan sulfate from adipocytes cultured in low glucose conditions binds to lipoprotein lipase by the same order of magnitude as that derived from high glucose conditions. It is apparent that adipocytes cultured under high glucose conditions produce diminished levels of heparan sulfate (without significant changes in N-sulfation). In conclusion, it is possible that the reduction in heparan sulfate in diabetes could contribute to the decreased levels of heparan sulfate associated lipoprotein lipase, leading to diabetic hypertriglyceridemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. David G: Integral membrane heparan sulfate proteoglycans. FASEB J 7: 1023-1030 (review), 1993

    Google Scholar 

  2. Salmivirta M, Linholt K, Lindahl U: Heparan sulfate: A piece of information. FASEB J 10: 1270-1279 (review), 1996

    Google Scholar 

  3. Roden L: In: W.J. Lennarz (ed). The Biochemistry of Glycoproteins and Proteoglycans. Plenum Press New York, 1980

    Google Scholar 

  4. Gallagher JT, Turnbull JE, Lyon M: Patterns of sulfation in heparan sulfate: Polymorphism based on a common structural theme. Int J Biochem 24: 553-560 (review), 1992

    Google Scholar 

  5. Brown DM, Klein DJ, Michael AF, Oegema TR: 35S-glycosaminoglycan and 35S-glycopeptide metabolism by diabetic glomeruli and aorta. Diabetes 31: 418-425, 1982

    Google Scholar 

  6. Rohrbach DH, Hassell JR, Kleinman HK, Martin GR: Alterations in basement membrane (heparan sulfate) proteoglycan in diabetic mice. Diabetes 31: 185-188, 1982

    Google Scholar 

  7. Cohen MP, Surma ML: [35S]sulfate incorporation into glomerular basement membrane glycosaminoglycans is decreased in experimental diabetes. J Lab Clin Med 98: 715-722, 1981

    Google Scholar 

  8. Kanwar YS, Rosenweig LJ, Linker A, Jakubowski ML: Decreased de novo synthesis of glomerular proteoglycans in diabetes: Biochemical and autoradiographic evidence. Proc Natl Acad Sci USA 80: 2272-2277, 1983

    Google Scholar 

  9. Klein DJ, Brown DM, Oegema TR: Glomerular proteoglycans in diabetes. Partial structural characterization and metabolism of de novo synthesized heparan-35SO4 and dermatan-35SO4 proteoglycans in streptozotocin-induced diabetic rats. Diabetes 35: 1130-1142, 1986

    Google Scholar 

  10. Parthasarathy N, Spiro RG: Effect of diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes 31: 738-741, 1982

    Google Scholar 

  11. Fukui M, Nakamura T, Ebihara I, Shirato I, Tomino Y, Koide H: ECM gene expression and its modulation by insulin in diabetic rats. Diabetes 41: 1520-1527, 1992

    Google Scholar 

  12. Kjellen I, Bielefeld D, Hook M: Reduced sulfation of liver heparan sulfate in experimentally induced diabetic rats. Diabetes 32: 337-342, 1983

    Google Scholar 

  13. Morano S, Guidobaldi L, Cipriani R, Gabriele A, Pantellini F, Medici F, D'Erme M, Mario UD: High glucose modifies heparan sulfate synthesis by mouse glomerular epithelial cells. Diabetes Metab Rev 15: 13-20, 1999

    Google Scholar 

  14. Mason RM, Thomas G, Davies M: Proteoglycan synthesis by human mesangial cells is depressed by hyperglycaemic glucose concentrations. Biochem Soc Trans 20: 96S, 1992

    Google Scholar 

  15. Sibiger S, Schlondorff D, Crowley S, Rosenberg L, Choi H, Hatcher V, Gordon P: The effect of glucose on proteoglycans produced by cultured mesangial cells. Diabetes 42: 1815-1822, 1993

    Google Scholar 

  16. Bensadoun A: Lipoprotein lipase. Ann Rev Nutr 11: 217-237 (review), 1991

    Google Scholar 

  17. Misra KB, Kim KC, Kim S, Cho M, Low MG, Bensadoun A: Purification and characterization of adipocyte heparan sulfate proteoglycans with affinity for lipoprotein lipase. J Biol Chem 269: 23838-23844, 1994

    Google Scholar 

  18. Sasaki A, Goldberg IJ: Lipoprotein lipase release from BFC-1 beta adipocytes. Effects of triglyceride-rich lipoproteins and lipolysis products. J Biol Chem 267: 15198-15204, 1992

    Google Scholar 

  19. Bagdade JD, Porte D Jr, Bierman EL: A form of acquired fat-induced lipemia. New Engl J Med 276: 427-433, 1967

    Google Scholar 

  20. Hyman LR, Wong PW, Grossman A: Plasma lipoprotein lipase in children with idiopathic nephrotic syndrome. Pediatrics 44: 1021-1024, 1969

    Google Scholar 

  21. Oetlicker OH, Mordasini R, Lutschg J, Riesen W: Lipoprotein metabolism in nephrotic syndrome in childhood. Pediatric Res 14: 64-66, 1980

    Google Scholar 

  22. Yamada M, Matsuda I: Lipoprotein lipase in clinical and experimental nephrosis. Clin Chim Acta 30: 787-794, 1970

    Google Scholar 

  23. Kashyap ML, Srivastava LS, Hynd BA, Brady D, Perisutti G, Glueck CJ, Gartside PS: Apolipoprotein CII and lipoprotein lipase in human nephrotic syndrome. Atherosclerosis 35: 29-40, 1980

    Google Scholar 

  24. Staprans I, Anderson CD, Lurz FW, Ffelts JM: Separation of a lipoprotein lipase cofactor from the alpha 1-acid glycoprotein from the urine of nephrotic patients. Biochim Biophys Acta 617: 514-523, 1980

    Google Scholar 

  25. Murase T, Cattran DC, Rubenstein B, Steiner G: Inhibition of lipoprotein lipase by uremic plasma, a possible cause of hypertriglyceridemia. Metab Clin Exp 24: 1279-1286, 1975

    Google Scholar 

  26. O'Looney P, Irwin D, Briscoe P, Vahouny GV: Lipoprotein composition as a component in the lipoprotein clearance defect in experimental diabetes. J Biol Chem 260: 428-432, 1985

    Google Scholar 

  27. Silbiger S, Crowley S, Shan Z, Brownlee M, Satriano J, Schlondorff D: Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge. Kidney Int 43: 853-864, 1993

    Google Scholar 

  28. Kern PA, Mandic A, Eckel RH: Regulation of lipoprotein lipase by glucose in primary cultures of isolated human adipocytes. Relevance to hypertriglyceridemia of diabetes. Diabetes 36: 1238-1245, 1987

    Google Scholar 

  29. Frost SC, Lane MD: Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3-L1 adipocytes. J Biol Chem 260: 2646-2652, 1985

    Google Scholar 

  30. Edwards IJ, Wagner WD: Distinct synthetic and structural characteristics of proteoglycans produced by cultured artery smooth muscle cells of atherosclerosis-susceptible pigeons. J Biol Chem 263: 9612-9620, 1988

    Google Scholar 

  31. Edge ASB, Spiro RG: Characterization of novel sequences containing 3-O-sulfated glucosamine in glomerular basement membrane heparan sulfate and localization of sulfated disaccharides to a peripheral domain. J Biol Chem 265: 15874-15881, 1990

    Google Scholar 

  32. Parthasarathy N, Gotow LF, Bottoms JD, Kute TE, Wagner WD, Mulloy B: Oligosaccharide sequences of human breast cancer cell heparan sulfate with high affinity for laminin. J Biol Chem 273: 21111-21114, 1998

    Google Scholar 

  33. Blumenkrantz MJ, Asboe-Hansen G: New method for quantitative determination of uronic acids. Anal Biochem 54: 484-489, 1973

    Google Scholar 

  34. Carlson DM: Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem 243: 616-626, 1968

    Google Scholar 

  35. Bienkowski MJ, Conrad HE: Structural characterization of the oligosaccharides formed by depolymerization of heparin with nitrous acid. J Biol Chem 260: 356-365, 1985

    Google Scholar 

  36. Parthasarathy N, Goldberg IJ, Sivaram P, Mulloy B, Flory DM, Wagner WD: Oligosaccharide sequences of endothelial cell surface heparan sulfate proteoglycan with affinity for lipoprotein lipase. J Biol Chem 269: 22391-22396, 1994

    Google Scholar 

  37. Wasteson A: A method for the determination of the molecular weight and molecular weight distribution of chondroitin sulfate. J Chromatogr 59: 87-97, 1971

    Google Scholar 

  38. Shirk RA, Parthasarathy N, San Antonio JD, Church FC, Wagner WD: Altered dermatan sulfate structure and reduced heparin cofactor II stimulating activity of biglycan and decorin from human atherosclerotic plaque. J Biol Chem 275: 18085-18092, 2000

    Google Scholar 

  39. Bai X, Esko JD: An animal cell mutant defective in heparan sulfate hexuronic acid 2-O-sulfation. J Biol Chem 271: 17711-17717, 1996

    Google Scholar 

  40. Mendicino J, Sangadala S: Synthesis of sulfated oligosaccharides by cystic fibrosis trachea epithelial cells. Mol Cell Biochem 201: 141-149, 1999

    Google Scholar 

  41. Bame KJ, Esko JD: Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant deficient in heparan sulfate N-sulfotransferase. J Biol Chem 264: 8059-8065, 1996

    Google Scholar 

  42. Sugumaran G, Katsman M, Drake RR: Purification, photoaffinity labeling, characterization of a single enzyme for 6-O-sulfation of both chondroitin sulfate and keratan sulfate. J Biol Chem 270: 22483-22487, 1995

    Google Scholar 

  43. Hashimoto Y, Orellana A, Gil G, Hirschberg C: Molecular cloning and expression of rat liver N-heparan sulfate sulfotransferase. J Biol Chem 267: 15744-15750, 1992

    Google Scholar 

  44. Hillis D and Dixon T: Ribosomal DNA. Molecular evolution and phylogenetic inference. Quart Rev Biol 66: 411, 1991

    Google Scholar 

  45. Scorro L, Green CC, Jackson RL: Preparation of a homogeneous and stable form of bovine milk lipoprotein lipase. Prep Biochem 15: 133-143, 1985

    Google Scholar 

  46. Maccarana M, Casu B, Lindahl U: Minimal sequence of heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem 268: 23898-23905, 1993

    Google Scholar 

  47. Eckel RH, Prasad JE, Kern PA, Marshall S: Insulin regulation of lipoprotein lipase in cultured isolated rat adipocytes. Endocrinology 114: 165-167, 1984

    Google Scholar 

  48. Nieuwenhuizen W, Emeis JJ, Van Sabben CM: Localization of lipaselike immunoreactivity in porcine adipose, aortic and myocardial tissue. Atherosclerosis 27: 97-106, 1977

    Google Scholar 

  49. Jonasson L, Hansson, G, Bondjers G, Bengtsson G, Olivecrona T: Immunohistochemical localization of lipoprotein lipase in adipose tissue. Atherosclerosis 51: 313-326, 1984

    Google Scholar 

  50. Stewart JE, Schotz MC: Release of lipoprotein lipase activity from isolated fat cells. II. Effect of heparin. J Biol Chem 249: 904-907, 1974

    Google Scholar 

  51. Camps L, Reina M, Llobera M, Vilaro S, Olivecrona T: Lipoprotein lipase: Cellular origin and functional distribution. Amer J Physiol 258: Pt 1, C673-681, 1990

    Google Scholar 

  52. Cisar LA, Hoogewerf AJ, Cupp M, Rapport CA, Bensadoun A: Secretion and degradation of lipoprotein lipase in cultured adipocytes. Binding of lipoprotein lipase to membrane heparan sulfate proteoglycans is necessary for degradation. J Biol Chem 264: 1767-1774, 1989

    Google Scholar 

  53. Kinsella MG, Wight TN: Structural characterization of heparan sulfate proteoglycan subclasses isolated from bovine aortic endothelial cell cultures. Biochemistry 27: 2136-2144, 1988

    Google Scholar 

  54. Shworak NW, Kojima T, Rosenberg RD: Isolation and characterization of ryudocan and syndecan heparan sulfate proteoglycans, core proteins, and cDNAs from a rat endothelial cell line. Haemostasis 23 (suppl 1): 161-176, 1993

    Google Scholar 

  55. Braun JE, Severson DL: Diabetes reduces heparin-and phospholipase C-releasable lipoprotein lipase from cardiac myocytes. Amer J Physiol 260: Pt 1, E477-485, 1991

    Google Scholar 

  56. Chan BL, Lisanti MB, Rodriguez-Boulan E, Saltiel AR: Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidylinositol anchor. Science 241: 1670-1672, 1988

    Google Scholar 

  57. Chajek-Shaul TO, Halimi O, Ben-Naim M, Stein O, Stein Y: Phosphatidylinositol-specific phospholipase C releases lipoprotein lipase from the heparin releasable pool in rat heart cell cultures. Biochim Biophys Acta 1014: 178-183, 1989

    Google Scholar 

  58. Hoogerwerf AJ Cisar LA Evans DC Bensadoun A Effect of chlorate on the sulfation of lipoprotein lipase and heparan sulfate proteoglycans. Sulfation of heparan sulfate proteoglycans affects lipoprotein lipase degradation. J Biol Chem 266: 16564-16571, 1991

    Google Scholar 

  59. Lindahl U, Hook M, Backstrom G, Jacobsson I, Risenfeld A, Malmstrom A, Roden L, Feingold DS: Structure and biosynthesis of heparinlike polysaccharides. Fed Proc 36: 19-24, 1977

    Google Scholar 

  60. Kofoed-Enevoldsen A, Petersen JS, Deckert T: Glucosaminyl N-deacetylase in cultured fibroblasts: Comparison of patients with and without diabetic nephropathy, and identification of a possible mechanism for diabetes-induced N-deacetylase inhibition. Diabetologia 36: 536-540, 1993

    Google Scholar 

  61. Kofoed-Enevoldsen A: Inhibition of glucosaminyl N-deacetylase in diabetic rats. Kidney Int 41: 763-767, 1992

    Google Scholar 

  62. Kofoed-Enevoldsen A, Noonan D, Deckert T: Diabetes mellitus induced inhibition of glucosaminyl N-deacetylase: Effect of short-term blood glucose control in diabetic rats. Diabetologia 36: 310-315, 1993

    Google Scholar 

  63. Gershman H, Robbins PW: Transitory effects of glucose starvation on the synthesis of dolichol-linked oligosaccharides in mammalian cells. J Biol Chem 256: 7774-7780, 1981

    Google Scholar 

  64. Pearick JI, Chapman A, Kornfeld S: Glucose starvation alters lipidlinked oligosaccharide biosynthesis in Chinese hamster ovary cells. J Biol Chem 256: 6255-6261, 1981

    Google Scholar 

  65. Tavangar K, Murata M, Pedersen ME, Goers AR, Hoffman AR, Kramer B: Regulation of lipoprotein lipase in the diabetic rat. J Clin Invest 90: 1672-1678, 1992

    Google Scholar 

  66. Ong JM, Kirchgessner TG, Scholtz, Kern PA: Insulin increases the synthetic rate and messenger RNA level of lipoprotein lipase in isolated rat adipocytes. J Biol Chem 263: 12933-12938, 1988

    Google Scholar 

  67. Spooner PM, Chernick SS, Garrison MM, Scow RO: Insulin regulation of lipoprotein lipase activity and release in 3T3-L1 adipocytes. Separation and dependence of hormonal effects on hexose metabolism and synthesis of RNA and protein. J. Biol Chem 254: 10021-10029, 1979

    Google Scholar 

  68. Nakajima M, Irimura T, Nicolson GL: Tumor metastasis-associated heparanase (heparan sulfate endoglycosidase) activity in human melanoma cells. Cancer Lett 31: 277-283, 1986

    Google Scholar 

  69. Ebara T, Conde K, Kako Y, Liu Y, Xu Y, Ramakrishnan R, Goldberg IJ, Shachter NS: Delayed catabolism of apoB48 lipoproteins in streptozotocin-treated mice: Evidence that diabetes leads to a selective alteration in the heparan sulfate proteoglycan pathway of chylomicron remnant degradation. J. Clin. Invest 105: 1807-1818, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parthasarathy, N., Gotow, L.F., Bottoms, J.D. et al. Influence of glucose on production and N-sulfation of heparan sulfate in cultured adipocyte cells. Mol Cell Biochem 213, 1–9 (2000). https://doi.org/10.1023/A:1007110700454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007110700454

Navigation