Advertisement

Journal of Protein Chemistry

, Volume 19, Issue 3, pp 177–183 | Cite as

α-to-β Structural Transformation of Ovalbumin: Heat and pH Effects

  • H. Y. Hu
  • H. N. Du
Article

Abstract

Ovalbumin is an important member of the serpin superfamily without inhibitory activity. The heat- and pH-induced α-to-β structural transformations of ovalbumin were investigated by means of circular dichroism and binding of ANS and Congo red dyes. The native ovalbumin shows a mixture of α-helix and β-sheet, while both the heat and alkali treatments are able to transform the native protein into a predominance of β-sheet secondary structure. The free energy changes during transitions to the unfolded state are 5.19 kcal/mol from the native state and 4.00 kcal/mol from the heat-treated one. The binding abilities of the heat-treated and the alkali-treated forms to ANS and Congo red suggest that the altered forms exhibit hydrophobic exposure and intermolecular interaction. The results substantiate that the altered protein forms bearing increased β-sheet structures are prone to aggregation, which is implicated in the pathogenesis of some conformational diseases.

Ovalbumin structural transformation aggregation heat pH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Baker, D., and Agard, D. (1994). Biochemistry 33, 7505–7509.Google Scholar
  2. Booth, D. R., Sunde, M., Bellotti, V., Robinson, C. V., Hutchinson, W. L., Frayser, P. E., Hawkins, P. N., Dobson, C. M., Radford, S. E., Blake, C. C. F., and Pepys, M. B. (1997). Nature 385, 787–793.Google Scholar
  3. Carrell, R. W., and Gooptu, B. (1998). Curr. Opin. Struct. Biol. 8, 799–809.Google Scholar
  4. Hu, H. Y., and Xu, G. J. (1999). Prog. Biochem. Biophys. 26, 9–12.Google Scholar
  5. Hu, H. Y., Lu, Z. X., and Du, Y. C. (1997). J. Peptide Res. 49, 113–119.Google Scholar
  6. Huntington, J. A., Patston, P. A., and Gettins, P. G. W. (1995). Protein Sci. 4, 613–621.Google Scholar
  7. Klunk, W. E., Jacob, R. F., and Mason, R. P. (1999). Anal. Biochem. 266, 66–76.Google Scholar
  8. Koo, E. H., Lansbury, P. T., and Kelly, J. W. (1999). Proc. Natl. Acad. Sci. USA 96, 9989–9990.Google Scholar
  9. Lomas, D. A., Evans, D. L., Finch, J. T., and Carrell, R. W. (1992). Nature 357, 605–607.Google Scholar
  10. Mellet, P., Michels, B., and Bieth, J. G. (1996). J. Biol. Chem. 271, 30311–30314.Google Scholar
  11. Mihara, H., and Takahashi, Y. (1997). Curr. Opin. Struct. Biol. 7, 501–508.Google Scholar
  12. Myers, J. K., Pace, C. N., and Scholtz, J. M. (1995). Protein Sci. 4, 2138–2148.Google Scholar
  13. Ottesen, M., and Wallevik, K. (1968). Biochim. Biophys. Acta 160, 262–264.Google Scholar
  14. Ptitsyn, O. B. (1987). J. Protein Chem. 6, 273–293.Google Scholar
  15. Shortle, D. (1995). Adv. Protein Chem. 46, 217–247.Google Scholar
  16. Stein, P. E., and Carrell, R. W. (1995). Nature Struct. Biol. 2, 96–113.Google Scholar
  17. Stein, P. E., and Chothia, C. (1991). J. Mol. Biol. 221, 615–621.Google Scholar
  18. Stein, P. E., Leslie, A. G., Finch, J. T., and Carrell, R. W. (1991). J. Mol. Biol. 221, 941–959.Google Scholar
  19. Tatsumi, E., and Hirose, M. (1997). J. Biochem. Tokyo 122, 300–308.Google Scholar
  20. Turnell, W. G., and Finch, J. T. (1992). J. Mol. Biol. 227, 1205–1223.Google Scholar
  21. Wang, Z., Mottonen, J., and Goldsmith, E. J. (1996). Biochemistry 35, 16443–16448.Google Scholar
  22. Wood, S. J., Maleeff, B., Hart, T., and Wetzel, R. (1996). J. Mol. Biol. 256, 870–877.Google Scholar
  23. Wright, H. T. (1996). BioEssays 18, 453–464.Google Scholar
  24. Yang, J. T., Wu, C. S. C., and Martinez, H. M. (1986). Meth. Enzymol. 130, 208–269.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • H. Y. Hu
    • 1
  • H. N. Du
    • 2
  1. 1.Shanghai Institute of BiochemistryChinese Academy of SciencesShanghaiChina
  2. 2.Shanghai Institute of BiochemistryChinese Academy of SciencesShanghaiChina

Personalised recommendations