Skip to main content
Log in

Optic nerve regeneration after intravitreal peripheral nerve implants: trajectories of axons regrowing through the optic chiasm into the optic tracts

  • Published:
Journal of Neurocytology

Abstract

We have studied axon regeneration through the optic chiasm of adult rats 30 days after prechiasmatic intracranial optic nerve crush and serial intravitreal sciatic nerve grafting on day 0 and 14 post-lesion. The experiments comprised three groups of treated rats and three groups of controls. All treated animals received intravitreal grafts either into the left eye after both left sided (unilateral) and bilateral optic nerve transection, or into both eyes after bilateral optic nerve transection. Control eyes were all sham grafted on day 0 and 14 post-lesion, and the optic nerves either unlesioned, or crushed unilaterally or bilaterally. No regeneration through the chiasm was seen in any of the lesioned control optic nerves. In all experimental groups, large numbers of axons regenerated across the optic nerve lesions ipsilateral to the grafted eyes, traversed the short distal segment of the optic nerve and invaded the chiasm without deflection. Regeneration was correlated with the absence of the mesodermal components in the scar. In all cases, axon regrowth through the chiasm appeared to establish a major crossed and a minor uncrossed projection into both optic tracts, with some aberrant growth into the contralateral optic nerve. Axons preferentially regenerated within the degenerating trajectories from their own eye, through fragmented myelin and axonal debris, and reactive astrocytes, oligodendrocytes, microglia and macrophages. In bilaterally lesioned animals, no regeneration was detected in the optic nerve of the unimplanted eye. Although astrocytes became reactive and their processes proliferated, the architecture of their intrafascicular processes was little perturbed after optic nerve transection within either the distal optic nerve segment or the chiasm. The re-establishment of a comparatively normal pattern of passage through the chiasm by regenerating axons in the adult might therefore be organised by this relatively immutable scaffold of astrocyte processes. Binocular interactions between regenerating axons from both nerves (after bilateral optic nerve transection and intravitreal grafting), and between regenerating axons and the intact transchiasmatic projections from the unlesioned eye (after unilateral optic nerve lesions and after ipsilateral grafting) may not be important in establishing the divergent trajectories, since regenerating axons behave similarly in the presence and absence of an intact projection from the other eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendoerfer, K. L., Cabelli, R. J., Escan ´d on, E., Kaplan, D. R., Nikolics, K. & Shatz, C. J. (1994) Regulation of neurotrophin receptors during the maturation of the mammalian visual system. Journal of Neuroscience 14, 1795-811.

    PubMed  Google Scholar 

  • Assouline, J. G., Bosch, P., Lim, R., Insook, K., Jensen, R. & Pantazis, N. J. (1987) Rat astrocytes and Schwann cells in culture synthesize nerve growth factor-like neurite promoting factors. Developmental Brain Research 31, 103-18.

    Google Scholar 

  • Baker, G. E. (1990) Prechiasmatic reordering of fibre diameter classes in the retinofugal pathway of ferrets. European Journal of Neuroscience 2, 24-33.

    PubMed  Google Scholar 

  • Baker, G. E. & Jeffery, G. (1989) Distribution of uncrossed axons along the course of the optic nerve and chiasma of rodents. Journal of Comparative Neurology 289, 455-61.

    PubMed  Google Scholar 

  • Berkelaar, M., Clarke, D. B., Wang, Y.-C., Bray, G. M. & Aguayo, A. J. (1994) Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. Journal of Neuroscience 14, 4368-74.

    PubMed  Google Scholar 

  • Berry, M. (1982) Post-injury myelin-breakdown products inhibit axonal growth; an hypothesis to explain the failure of axonal regeneration in the mammalian central nervous system. Bibilotheca Anatomica 23, 1-11.

    Google Scholar 

  • Berry, M., Maxwell, W. L., Logan, A., Matthewson, A., Mcconnell, P., Ashhurst, D. E. & Thomas, G. H. (1983) Deposition of scar tissue in the central nervous system. Acta Neurochirurgica 32 (Suppl.), 31-53.

    PubMed  Google Scholar 

  • Berry, M., Hall, S., Follows R. & Wyse, J. P. H. (1989) Defective myelination in the optic nerve of the Browman-Wyse (BW) mutant rat. Journal of Neurocytology 18, 141-59.

    PubMed  Google Scholar 

  • Berry, M., Hall, S., Rees, L., Carlile, J. & Wyse, J. P. M. (1992) Regeneration of axons in the optic nerve of the adult Browman-Wyse (BW) mutant rat. Journal of Neurocytology 21, 426-48.

    PubMed  Google Scholar 

  • Berry, M., Hall, S., Shewan, D. & Cohen, J. (1994) Axon growth and its inhibition. Eye 8, 245-54.

    PubMed  Google Scholar 

  • Berry, M., Carlile, J. & Hunter, A. (1996) Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. Journal of Neurocytology 25, 147-70.

    PubMed  Google Scholar 

  • Bignami, A., Dahl, D., Nguyen, B. T. & Crosby, C. J. (1981) The fate of axonal debris in Wallarian degeneration of the rat optic and sciatic nerves. Journal of Neuropathology and Experimental Neurology 40, 337-50.

    Google Scholar 

  • Birkedal-hansen, H., Moore, W. G. I. & Bodden, M. K. (1993) Matrix metalloproteinases: a review. Critical Reviews in Oral Biology and Medicine 4, 197-250.

    PubMed  Google Scholar 

  • Butt, A. M. & Kirvell, S. (1996) Glial cells in the transected optic nerves of immature rats. II. An immunocytochemical study. Journal of Neurocytology 25, 381-92.

    Google Scholar 

  • Cadelli, D. S., Bandtlow, C. E. & Schwab, M. E. (1992) Oligodendrocyte-and myelin-associated inhibitors of neurite outgrowth: their involvement in the lack of CNS regeneration. Experimental Neurology 115, 189-92.

    PubMed  Google Scholar 

  • Cai, D., Shen, Y., De Bellard, M., Tang, S. & Filbin, M. T. (1999) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22, 89-101.

    PubMed  Google Scholar 

  • Cameron, R. S. & Rakic, P. (1991) Glial cell lineage in the cerebral cortex: a review and synthesis. Glia 4, 124-37.

    PubMed  Google Scholar 

  • Caroni, P. & Schwab, M. E. (1988) Antibody against myelin associated inhibitor of neurite growth neutralises non-permissive substrate properties of CNS white matter. Neuron 1, 85-96.

    PubMed  Google Scholar 

  • Chan, S. D. & Guillery, R. W. (1993) Developmental changes produced in the retinofugal pathways of rats and ferrets after early monocular enucleation: the effects of age and the difference between albino and normal animals. Journal of Neuroscience 13, 5277-93.

    PubMed  Google Scholar 

  • Choi, B. H. & Lapham, L. W. (1978) Radial glia in the human fetal cerebrum: a combined Golgi immunofluorescence and electronmicroscopic study. Brain Research 148, 295-311.

    PubMed  Google Scholar 

  • Colello, R. J. & Guillery, R. W. (1990) The early development of retinal ganglion cells with uncrossed axons in the mouse: retinal position and axon course. Development 108, 515-23.

    PubMed  Google Scholar 

  • Cowey, A. & Perry, V. H. (1979) The projection of the temporal retina in rats, studied by retrograde transport of horseradish peroxidase. Experimental Brain Research 35, 457-64.

    Google Scholar 

  • Dreher, B., Sefton, A. J., In, S. Y. K. & Nisbett, G. (1985) The morphology, number, distribution and central projection of class I retinal ganglion cells in albino and hooded rats. Brain, Behavior and Evolution 26, 10-48.

    Google Scholar 

  • Drescher, U., Bonhoeffer, F. & Muller, B. K. (1997) The Eph family in retinal axon guidance. Current Opinion in Neurobiology 7, 75-80.

    PubMed  Google Scholar 

  • Easter, S. S. JR. & Taylor J. S. H. (1989) The development of the Xenopus retinofugal pathway: optic fibres join a pre-existing tract. Development 107, 553-73.

    PubMed  Google Scholar 

  • Ecclestein, F. P., Shipley, G. D. & Nishi, R. (1991) Acidic and basic fibroblast growth factors in the nervous system: distribution and differential alteration of level of injury of central versus peripheral nerve. Journal of Neuroscience 11, 412-19.

    PubMed  Google Scholar 

  • Eccleston, P. A., Collarini, E. J., Jessen, K. R., Mirsky, R. & Richardson, W. D. (1990) Schwann cells secrete and respond to platelet-derived growth factor: a possible autocrine growth mechanism involving PDGF. European Journal of Neuroscience 2, 985-92.

    PubMed  Google Scholar 

  • Evans, A. & Jeffery, G. (1992) The fascicular organisation of the cat optic nerve. Experimental Brain Research 91, 79-84.

    Google Scholar 

  • Fawcett, J. W. & Housdon, E. (1990) The effects of protease inhibitors on axon growth through astrocytes. Development 108, 59-66.

    PubMed  Google Scholar 

  • Fawcett, J. W., Taylor, J. S. H., Gaze, R. M., Grant, P. & Hurts, E. (1984) Fibre order in the normal Xenopus optic tract near the chiasma. Journal of Embryology and Experimental Morphology 83, 1-14.

    Google Scholar 

  • Flanagan, J. G. & Vanderhaeghen, P. (1998) The ephrins and EPH receptors in neural development. Annual Review of Neuroscience 21, 309-45.

    PubMed  Google Scholar 

  • Friedman, B., Scherer, S. S., Rudge, J. S., Helgren, M., Morrisey, D., Mcclain, J., Wang, D.-Y., Wiegand, S. J., Furth, M. E., Lindsay, R. M. & Ip, N. Y. (1992) Regulation of ciliary neurotrophic factor expression in myelin-related Schwann cells in vivo. Neuron 9, 295-305.

    PubMed  Google Scholar 

  • Godement, P., Sal. N, J. & Mason, C. A. (1990) Retinal axon pathfinding in the optic chiasm: Divergence of crossed and uncrossed fibres. Neuron 5, 173-86.

    PubMed  Google Scholar 

  • Godement. P., Wang, L. C. & Mason, C. A. (1994) Retinal axon divergence in the optic chiasma: dynamics of growth cone behavior at the mid-line. Journal of Neuroscience 14, 7024-39.

    PubMed  Google Scholar 

  • Godement, P., Vanselow, J. Thanos, S. & Bonhoeffer, F. (1987) A study of the developing visual system with a new method of staining neurones and their processes in fixed tissue. Development 101, 697-713.

    PubMed  Google Scholar 

  • Guillery, R. W. (1989) Early monocular enucleation in foetal ferrets produces a decrease of uncrossed and an increase of crossed retinofugal components: a possible model for the albino abnormality. Journal of Anatomy 164, 73-84.

    PubMed  Google Scholar 

  • Hall, S., Berry, M. & Wyse, J. P. H. (1992) Regrowth of PNS axons through grafts of the optic nerve of the BW mutant rat. Journal of Neurocytology 21, 402-12.

    PubMed  Google Scholar 

  • Henderson, C. E., Philips, H. S., Pollock, R. A., Davies, A. M., Lemeulle, C., Armini, M., Simmons, L., Moffet, B., Vandlen, R. A. & Simpson, L. C. (1994) GDNF: a potent survival factor to motoneurons present in peripheral nerve and muscle. Science 266, 1062-4.

    PubMed  Google Scholar 

  • Heumann, R., Korsching, S., Bandtlow, C. & Thoenen, H. (1987) Changes in nerve growth factor synthesis of non-neuronal cells in response to sciatic nerve transection. Journal of Cell Biology 104, 1623-31.

    PubMed  Google Scholar 

  • Horsburgh, G. M. & Sefton, A. J. (1986) The early development of the optic nerve and chiasm in the embryonic rat. Journal of Comparative Neurology 243, 547-60.

    PubMed  Google Scholar 

  • Horton, J. C., Greenwood, M. M. & Hubel, D. H. (1979) Non-retinotopic arrangement of fibres in the cat optic nerve. Nature 282, 720-2.

    PubMed  Google Scholar 

  • Jeffery, G. (1984) Retinal ganglion cell death and terminal field retraction in the developing rodent visual system. Developmental Brain Research 13, 81-96.

    Google Scholar 

  • Jeffery, G. (1989) Distribution and trajectory of uncrossed axons in the optic nerves of pigmented and albino rats. Journal of Comparative Neurology 289, 462-6.

    PubMed  Google Scholar 

  • Jeffery, G. (1990) Distribution of uncrossed and crossed retinofugal axons in the cat optic nerve and their relationship to patterns of fasciculation. Visual Neuroscience 5, 99-104.

    PubMed  Google Scholar 

  • Jelsma, T. N., Friedman, H. H., Berkelaar, M., Bray, G. M. & Aguayo, K. J. (1993) Different forms of the neurotrophin receptor TRKB messenger-RNA predominate in rat retina and optic nerve. Journal of Neurobiology 24, 1207-14.

    PubMed  Google Scholar 

  • Johnson, A. R. (1993) Contact inhibition in the failure of mammalianCNSaxon regeneration. Bioessays 15, 807-13.

    PubMed  Google Scholar 

  • Keynes, R. J. & Cook, G. M. W. (1995) Repulsive and inhibitory signals. Current Opinion in Biology 5, 75-82.

    Google Scholar 

  • Koide, T., Takahashi, J. B., Hoshimaru, M., Kojima, M., Otsuka, T., Asahi, M. & Kikushi, H. (1995) Localization of TRKB and low-affinity nerve growth-factor receptor messenger-RNA in the developing rat retina. Neuroscience Letters 185, 183-6.

    PubMed  Google Scholar 

  • Lindsay, R. M. (1986) Reactive gliosis. In Astrocytes, Vol. 3 (edited by Federoff, S. & Vernadakis, A.) pp. 231-62. New York: Academic Press.

    Google Scholar 

  • Liuzzi, J. L. & Lasek, R. J. (1987) Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science 237, 642-5.

    PubMed  Google Scholar 

  • Mansour, M., Asher, R., Dahl, D., Labkovsley, B., Perides, G. & Bignami, A. (1990) Permissive and non-permissive reactive astrocytes: immunofluorescence study with antibodies to the glial hyaluronatebinding proteins. Journal of Neuroscience Research 25, 300-11.

    PubMed  Google Scholar 

  • Marcus, R. C., Blazeski, R., Godement, P. & Mason, C. A. (1995) Retinal axon divergence in the optic chiasma; uncrossed axons diverge from crossed axons within a mid-line glial specialization. Journal of Neuroscience 15, 3716-29.

    PubMed  Google Scholar 

  • Marcus, R. C. & Mason, C. A. (1993) Early retinal axon growth in the mouse ventral diencephalon. Society for Neuroscience Abstracts 19, 1418.

    Google Scholar 

  • Maxwell, W. L., Follows, R, Ashhurst, D. E. & Berry, M. (1990) The response of the cerebral hemisphere of the rat to injury. I. The mature rat. Philosophical Transactions of the Royal Society, Series B 328, 479-500.

    Google Scholar 

  • Mckanna, J. A. (1993) Optic chiasma and infundibular decussation sites in the developing rat diencephalon are defined by glial raphe expressing p35 (lipocortin-1, annexin I). Developmental Dynamics 195, 76-86.

    Google Scholar 

  • Monard, D. (1988) Cell-derived proteases and protease inhibitors as regulators of neurite outgrowth. Trends in Neurosciences 11, 541-4.

    PubMed  Google Scholar 

  • Moonen, G., Grau-wagemans, L. M. & Selak, I. (1982) Plasminogen activator-plasmin system and neuronal migration. Nature 298, 753-5.

    PubMed  Google Scholar 

  • Naito, J. (1986) Course of retinogeniculate projection fibres in the cat optic nerve. Journal of Comparative Neurology 251, 376-87.

    PubMed  Google Scholar 

  • Naito, J. (1989) Retinogeniculate projection fibres in the monkey optic nerve: a demonstration of the fibre pathways by retrograde axonal transport of WGA-HRP. Journal of Comparative Neurology 284, 174-76.

    PubMed  Google Scholar 

  • Navascu. S, J., Rodrêgez-gallardo, L., Garcêa-martinez, V. & Alvarez, I. S. (1987) Extra-axonal environment and fibre directionality in the early development of the chick embryo optic chiasm: a light and scanning electron microscopic study. Journal of Neurocytology 16, 299-310.

    PubMed  Google Scholar 

  • Nîgrçdi, A. (1993) Differential expression of carbonicanhydrase iso-enzymes in microglial cell types. Glia 8, 133-42.

    PubMed  Google Scholar 

  • Perez, M. T. R. & Caminos. E. (1995) Expression of brain-derived neurotrophic factor and its functional receptor in neonatal and adult rat retina. Neuroscience Letters 183, 96-9.

    PubMed  Google Scholar 

  • Pesheva, P., Spiers, E. & Schachner, M. (1989) JI-180 and JI-180 are oligodendrocyte secreted nonpermissive substrates for adhesion. Journal of Cell Biology 109, 1765-78.

    PubMed  Google Scholar 

  • Pittman, R. N. (1985) Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons. Developmental Biology 110, 91-101.

    PubMed  Google Scholar 

  • Pittman, R. N. & Williams, A. G. (1988) Neurite penetration into collagen gels requires Ca2+-dependent metalloproteinase activity. Developmental Neuroscience 11, 41-51.

    Google Scholar 

  • Raper, J. A., Bastiani, M. J. & Goodman, C. S. (1983) Path-finding by neuronal growth cones in grasshopper embryos II. Selective fasciculation onto specific axonal pathways. Journal of Neuroscience 3, 31-41.

    PubMed  Google Scholar 

  • Reese, B. E. & Baker, G. E. (1993) The re-establishment of the representation of the dorso-ventral retinal axis in the chiasmatic region of the ferret. Visual Neuroscience 10, 957-68.

    PubMed  Google Scholar 

  • Reese, B. E. & Jeffery, G. (1983) Crossed and uncrossed visual topography in the dorsal lateral geniculate nucleus of the pigmented rat. Journal of Neurophysiology 49, 877-85.

    PubMed  Google Scholar 

  • Reh, T. A., Pitts, E. & Constantine-paton, M. (1983) The organisation of fibres in normal and tectumless Rana pipiens. Journal of Comparative Neurology 218, 282-96.

    PubMed  Google Scholar 

  • Reier, P. J. (1986) Gliosis followingCNSinjury: the anatomy of astrocytic scars and their influence on axonal elongation. In Astrocytes, Vol. 3 (edited by Federoff, S. & Vernadakis, A.) pp. 263-324. New York: Academic Press.

    Google Scholar 

  • Rickman, D. W. & Brecha, N. C. (1995) Expression of the proto-oncogene, TRK, receptors in the developing rat retina. Visual Neuroscience 12, 215-22.

    PubMed  Google Scholar 

  • Romanic, A. M. & Madri, J. A. (1994) Extracellular matrix-degrading proteinase in the nervous system. Brain Pathology 4, 145-56.

    PubMed  Google Scholar 

  • Rush, R. A. (1984) Immunocytochemical localisation of endogenous nerve growth factor. Nature 312, 364-7.

    PubMed  Google Scholar 

  • Schmechel, D. E. & Rakic, P. (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anatomy and Embryology 156, 115-52.

    PubMed  Google Scholar 

  • Scholes, J. H. (1979) Nerve fibre topography in the retinal projection to the tectum. Nature 278, 620-4.

    PubMed  Google Scholar 

  • Schwab, M. E. (1990) Myelin associated inhibitors of neurite growth. Experimental Neurology 109, 2-5.

    PubMed  Google Scholar 

  • Schwab, M. E. & Thoenen, H. (1985) Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. Journal of Neuroscience 5, 2415-23.

    PubMed  Google Scholar 

  • Sendtner, M., St.ckli, K. A. & Thoenen, H. (1992) Synthesis and localisation of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration. Journal of Cell Biology 118, 139-48.

    PubMed  Google Scholar 

  • Shewan, D., Berry, M., Bedi, K. & Cohen, J. (1993) Embryonic optic nerve tissue fails to support neurite outgrowth by central peripheral neurons in vitro. European Journal of Neuroscience 5, 609-17.

    Google Scholar 

  • Shewan, D., Berry, M. & Cohen, J. (1995) Extensive regeneration in vitroby early embryonic neurons on immature and adult tissue. Journal of Neuroscience 15, 2057-62.

    PubMed  Google Scholar 

  • Silver, J. (1984) Studies on the factors that govern directionality of axonal growth in the embryonic optic nerve and at the chiasm of mice. Journal of Comparative Neurology 223, 238-51.

    PubMed  Google Scholar 

  • Snow, O. M., Lemmon, V., Carrino, O. A., Caplan, A I. & Silver, J. (1990) Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Experimental Neurology 109, 111-30.

    PubMed  Google Scholar 

  • Sperry, R. W. (1963) Chemoaffinity in the orderly growth of nerve fibre patterns and connections. Proceedings of the National Academy of Sciences USA 50, 703-10.

    Google Scholar 

  • Sretavan, D. W., Feng, L., Pure, E. & Reichardt, L. F. (1994) Embryonic neurons of the developing optic chiasm express LI and CD44, cell surface molecules with opposing effects on retinal axon growth. Neuron 12, 957-75.

    PubMed  Google Scholar 

  • Steedman, H. F. (1957) Polyester wax. A new ribboning embedding medium for histology. Nature 179, 1345.

    PubMed  Google Scholar 

  • St.ckli, K. A., Lottspeich, F., Sendtner, M., Masiakowski, P., Carroll, P., G.tz, R., Lindholm, D. & Thoenen, H. (1989) Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature 342, 920-3.

    PubMed  Google Scholar 

  • Takahashi, J. B., Hoshimaru, M., Kikuchi, H. & Hatanaka, M. (1993) Developmental expression of TRKB and low-affinity NGF receptor in the rat retina. Neuroscience Letters 151, 174-7.

    PubMed  Google Scholar 

  • Taylor, J. S. H. (1987) Fibre organisation and reorganisation in the retinotopic projection of Xenopus.Development 99, 393-410.

    Google Scholar 

  • Taylor, J. S. H. (1991) The early development of the frog retinotectal projection. Development(Suppl)2, 95-104.

    Google Scholar 

  • Taylor, J. S. H. & Guillery, R. W. (1995) The effects of a very early monocular enucleation upon the development of the uncrossed retinofugal pathway in ferrets. Journal of Comparative Neurology 357, 1-10.

    PubMed  Google Scholar 

  • Thanos, S. & Bonhoeffer, F. (1983) Investigation of the development and topographic order of retinotectal axons: anterograde and retrograde staining of axons and perikarya with rhodamine in vivo. Journal of Comparative Neurology 219, 420-31.

    PubMed  Google Scholar 

  • Trimmer, P. A. & Wunderlich, R. E. (1990) Changes in the astroglial scar formation in rat optic nerve as a function of development. Journal of Comparative Neurology 296, 359-78.

    PubMed  Google Scholar 

  • Torriglia, A. & Blaquet, P. R. (1994) Immunochemical evidence for a fibroblast growth-factor receptor in adult retinal optic fiber and synaptic layers. Neuroscience 60, 969-81.

    PubMed  Google Scholar 

  • Vaughn, J. E., Hinds, P. L. & Skoff, R. P. (1970) Electron microscopic studies ofWallerian degeneration in rat optic nerves. I. The multipotential glia. Journal of Comparative Neurology 140, 175-206.

    PubMed  Google Scholar 

  • Wang, L.-C., Godement, P. & Mason, C. A. (1992) Cells of the optic chiasm mid-line inhibit uncrossed retinal fibre outgrowth in vitro. Society for Neuroscience Abstracts 18, 222.

    Google Scholar 

  • Webster, M. J., Shatz, C. J., Kliot, M. & Silver, J. (1988) Abnormal pigmentation and unusual morphogenesis of the optic stalk may be correlated with retinal axon misguidance in embryonic siamese cats. Journal of Comparative Neurology 269, 592-611.

    PubMed  Google Scholar 

  • Weibel, D., Cadelli, D. & Schwab, M. E. (1994) Regeneration of lesioned optic nerve fibers is improved after neutralization of myelin-associated neurite growthinhibitors. Brain Research 642, 259-66.

    PubMed  Google Scholar 

  • Wells, M. K. & Bernstein, J. J. (1985) Scar formation and the barrier hypothesis in the failure of mammalian central nervous system regeneration. In Trauma in the Central Nervous System(edited by Dacy, R. G., Winn, H. R., Rimel, R. W. & Jane, J. A.) pp. 245-57. New York: Raven Press.

    Google Scholar 

  • Wizenmann, A., Thanos, S., Boxberg, V, Y. & Bonhoeffer, F. (1993) Differential reaction of crossing and non-crossing rat retinal axons on cell membrane preparations from the chiasm mid-line: an in vitro study. Development 117, 725-35.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, M., Carlile, J., Hunter, A. et al. Optic nerve regeneration after intravitreal peripheral nerve implants: trajectories of axons regrowing through the optic chiasm into the optic tracts. J Neurocytol 28, 721–741 (1999). https://doi.org/10.1023/A:1007086004022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007086004022

Keywords

Navigation