Skip to main content
Log in

Sulfated sialic acid-polymers inhibit the cytotoxic action of bee and snake venom

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Colominic acid is an α2,8-linked sialic acid polymer produced by Escherichia coli. We found that synthetic sulfated-colominic acids (SC) remarkably inhibited the cytotoxicity of bee and snake venom toward mouse fibroblast cells, but colominic acids showed no inhibition themselves, indicating the important role of sulfate groups in the inhibitory activity of SC. Other sulfated carbohydrates such as chondroitin sulfates, heparin and heparan sulfate showed no inhibition. SC also exhibited potent inhibition of melittin, a highly basic peptide, which is a major cytotoxic component of bee venom. SC did not inhibit phospholipase A2 activity in bee venom. This suggests that the inhibition of bee and snake venom by SC is due to inhibition of melittin and cardiotoxin, which is a cytolytic peptide in snake venom, respectively. SC with a higher sulfur content and a larger molecular mass showed more potent activity. The interaction between SC and melittin basically seems an ionic one, however, the conformation of SC is also likely important. For the binding of SC to melittin leading loss of its cytotoxic activity, the sulfate groups of SC must be properly arranged to interact with lysine and arginine residues of melittin molecules, which play an important role in the cytolytic activity. A higher molecular mass of SC substituted with more sulfate groups is required for more obvious inhibition of the cytotoxic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hemmerich S, Rosen SD (1994) Biochemistry 33: 4830–35.

    Google Scholar 

  2. Tsuboi S, Isogai Y, Hada N, King JK, Hindsgaul O, Fukuda M (1996) J Biol Chem 271: 27213–16.

    Google Scholar 

  3. Fiete D, Srivastava V, Hindsgaul O, Baenzinger JU (1991) Cell 67: 1103–110.

    Google Scholar 

  4. Fiete D, Beranek MC, Baenzinger JU (1998) Proc Natl Acad Sci USA 95: 2089–93.

    Google Scholar 

  5. Roche P (1991) Cell 67: 1131–43.

    Google Scholar 

  6. Loquin J, Lorted G, Ferro M, Mear N, Prome J-C, Boivin C (1997) J Bacteriol 179: 3079–83.

    Google Scholar 

  7. Nishimura SI, Kai H, Shimada K, Yoshida T, Tokura S, Kurita K, Nakashima H, Yamamoto N, Uryu T (1998) Carbohydr Res 306: 427–33.

    Google Scholar 

  8. Itoh M, Baba M, Hirabayashi K, Matsumoto M, Suzuki M, Shigeta S, Clerq DE (1989) Eur J Clin Microbiol Infect Des 8: 171–73.

    Google Scholar 

  9. Barry GT, Abbot V, Tsai T (1962) J Gen Microbiol 29: 335–52.

    Google Scholar 

  10. Silver RP, Finn CW, Vann WF, Aaronson W, Schneerson R, Kretschmer PJ, Garm CF (1981) Nature 289: 696–98.

    Google Scholar 

  11. Hatanaka K, Koizumi M, Kunou M, Ohtsuki T (1997) Glycocojugate J 14: S-91.

    Google Scholar 

  12. Svennerholm L (1957) Biochem Biophys Acta 24: 604–11.

    Google Scholar 

  13. Terho TT, Hartiala K (1971) Anal Biochem 41: 471–76.

    Google Scholar 

  14. Ishiyama M (1993) Chem Pharm Bull 41: 1118–22.

    Google Scholar 

  15. Habermann E (1972) Science 177: 314–23.

    Google Scholar 

  16. Sessa G, Freer JH, Colacicco G, Weissmann G (1969) J Biol Chem 244: 3575–82.

    Google Scholar 

  17. Hincha DK, Crowe JH (1996) Biochem Biophys Acta 1284: 162–70.

    Google Scholar 

  18. Habermann E (1980) In Natural Toxins (Eaker D, Wadstrom T, eds) pp 173–81. Oxford: Pergamon Press.

    Google Scholar 

  19. Schroeder E, Luebbe K, Lehman M, Beetz I (1971) Experimentia 27: 764–65.

    Google Scholar 

  20. Dufton MJ, Hider RC (1991) In SnakeToxins (Harvey AL, ed) pp 259–302. New York: Pergamon Press Inc.

    Google Scholar 

  21. Batenburg AM, Bougis PE, Rochat H, Verkleiji AJ, de Kruijiff B (1985) Biochemistry 24: 7101–110.

    Google Scholar 

  22. Patel HV, Vyas AA, Vyas KA, Liu Y-S, Chinag C-H, Chi L-M, Wu W-G (1997) J Biol Chem 272: 1484–92.

    Google Scholar 

  23. Louw AI (1974) Biochem Biophys Res Commun 58: 1022–29.

    Google Scholar 

  24. Condrea E, Barzilay M, Mager J (1970) Biochim Biophys Acta 210: 65–73.

    Google Scholar 

  25. Bougis PE, Marchot P, Rochat H (1987) Toxicon 25: 427–31

    Google Scholar 

  26. Kakehi K, Kinoshita M, Oda Y (1999) Anal Chem 71: 1592–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oda, Y., Kinoshita, M., Hamada, K. et al. Sulfated sialic acid-polymers inhibit the cytotoxic action of bee and snake venom. Glycoconj J 16, 457–463 (1999). https://doi.org/10.1023/A:1007074410201

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007074410201

Navigation