Skip to main content
Log in

Differential Activation of Signal Transduction Pathways Mediating Phagocytosis, Oxidative Burst, and Degranulation by Chicken Heterophils in Response to Stimulation with Opsonized Salmonella enteritidis

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The activation of signal transduction pathways is required for the expression of functional enhancement of cellular activities. In the present studies, initial attempts were made to identify the signal transduction factors involved in activating phagocytosis, generation of an oxidative burst, and degranulation by heterophils isolated from neonatal chickens in response to opsonized Salmonella enteritidis (opsonized SE). Peripheral blood heterophils were isolated and exposed to known inhibitors of signal transduction pathways for either 20 min (staurosporin, genistein, or verapamil) or 120 min (pertussis toxin) at 39°C. The cells were then stimulated for 30 min at 39°C with opsonized SE. Phagocytosis, luminol-dependent chemoluminescence (LDCL), and β-D glucuronidase release were then evaluated in vitro. The G-protein inhibitor pertussin toxin markedly inhibited (>80%) phagocytosis of opsonized SE. Both the protein kinase inhibitor (staurosporin) and calcium channel inhibitor (verapamil) reduced phagocytosis in a dose response manner. Genistein, a tyrosine kinase inhibitor, had no effect on phagocytosis. Staurosporin had a marked inhibitory effect on LDCL (>90%) while genistein had a dose responsive inhibition on LDCL. Both verapamil (40–45%) and pertussin toxin (50–55%) had a statistically significant, but less biologically significant effect on LDCL. Genistein significantly reduced the degranulation (78–81%) of heterophils by opsonized SE. Staurosporin also reduced degranulation by 43–50%, but neither verapamil nor pertussis toxin had a significant effect on degranulation. These findings demonstrate that distinct signal transduction pathways differentially regulate the stimulation of the functional activities of avian heterophils. Pertussin toxin-sensitive, Ca++-dependent G-proteins appear to regulate phagocytosis of opsonized SE, protein kinase C-dependent, tyrosine kinase-dependent protein phosphorylation plays a major role in LDCL, and tyrosine kinase(s)-dependent phosphorylation regulates primary granule release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Powell, P. C. 1987. Immune mechanisms in infections of poultry. Vet. Immunol. Immunopathol. 15: 87–113.

    Google Scholar 

  2. Powell, P. C. 1987. Macrophages and other non-lymphoid cells contributing to immunity. In: Avian Immunology: Basis and Practice, Vol. 1. A. Tovianen and P. Toivanen, editors. CRC Press, Boca Raton, Florida. 195–212.

    Google Scholar 

  3. Kogut, M. H., V. K. Lowry, R. B. Moyes, L. L. Bowden, R. Bowden, K. Genovese, and J. R. Deloach. 1998. Lymphokine-augmented activation of avian heterophils. Poult. Sci. 77: 964–971.

    Google Scholar 

  4. Daeron, M. 1997. Fc receptor biology. Ann. Rev. Immunol. 15:203–234.

    Google Scholar 

  5. Anderem, A. and D. M. Underhill. 1997. Mechanism of phagocytosis in macrophages. Ann. Rev. Immunol. 17:593–623.

    Google Scholar 

  6. Franc, N. C., K. White, and R. A. B. Ezekowitz. 1999. Phagocytosis and development: back to the future. Curr. Opin. Immunol. 11:47–52.

    Google Scholar 

  7. Harmon, B. G. 1998. Avian heterophils in inflammation and disease. Poult. Sci. 77:972–977.

    Google Scholar 

  8. Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. 1989. Cell Signaling. In: Molecular Biology of the Cell. Garland Publishing, Inc. New York. 681–726.

    Google Scholar 

  9. Adams, D. and T. Hamilton. 1984. The cell biology of macrophage activation. Ann. Rev. Immunol. 2:282–318.

    Google Scholar 

  10. Cassatella, M. A. 1996. The neutrophil. In: Cytokines Produced by Polymorphonuclear Neutrophils: Molecular and Biological Aspects. R. G. Landes Company, Austin, Texas. 1–8.

    Google Scholar 

  11. Lambeth, J. D. 1988. Activation of the respiratory burst oxidase in neutrophils: on the role of membrane-derived second messengers, Ca++, and protein kinase C. J. Bioenerg. Biomembr. 20:709–733.

    Google Scholar 

  12. Tauber, A. I., A. B. Karnard, and I. Ginnis. 1990. The role of phosphorylation in phagocytic activation. Curr. Top. Membr. Transp. 25:469–495.

    Google Scholar 

  13. Traynor-Kaplan, A. E. 1990. Phosphoinositide metabolism during phagocytic cell activation. Curr. Top. Membr. Transp. 35:303–362.

    Google Scholar 

  14. Divirilio, F., O. Stendel, D. Pittet, P. D. Pew, and T. Pozzan. 1990. Cytoplasmic calcium in phagocytic activation. Curr. Top. Membr. Transp. 35:180–205.

    Google Scholar 

  15. Thelen, M., B. DeWald, and M. Baggiolini. 1993. Neutrophil signal transduction and activation of the respiratory burst. Physiol. Rev. 73:797–821.

    Google Scholar 

  16. Yu, P.-W. and C. J. Czuprynski. 1996. Regulation of luminoldependent chemiluminescence and degranulation by bovine neutrophils stimulated with opsonized zymosan. Vet. Immunol. Immunopathol. 50:29–42. Heterophil Response to Opsonised S. enteritidis 15

    Google Scholar 

  17. Kabbur, M. B. and N. C. Jain. 1996. Signal transduction pathways involved in phagocytic and oxidative burst activities of cytokinetreated bovine neutrophils. Comp. Haematol. Int. 5:38–46.

    Google Scholar 

  18. Garner, C. V., R. D'Amico, and H. H. Simms. 1996. Cytokinemediated human polymorphonuclear neutrophil phagocytosis: evidence of differential sensitivities to manipulation of intracellular mechanisms. J. Surg. Res. 60:84–90.

    Google Scholar 

  19. Yu, P. W. and C. J. Czuprynski. 1995. A comparison of the effects of signal transduction inhibitors on oxidative burst and degranulation in IL-1b stimulated bovine neutrophils. Inflammation 19:611–626.

    Google Scholar 

  20. Snyderman, R., C. D. Smith, and M. W. Nerghese. 1986. Review: model for leukocyte regulation by chemoattractant receptors. Role of a guanine nucleotide regulatory protein and phosphoinositide metabolism. J. Leukoc. Biol. 40:785–800.

    Google Scholar 

  21. Lackie, J. M. 1988. The behavioral repertoire of neutrophils requires multiple signal transduction pathways. J. Cell Sci. 89:449–461.

    Google Scholar 

  22. DeWald, B., M. Thelen, M. P. WymanN, and M. Baggiolini. 1989. Staurosporin inhibits the respiratory burst and induces exocytosis in human neutrophils. Biochem. J. 264:879–884.

    Google Scholar 

  23. Reibman, J., K. Haines, and G. Weissmann. 1990. Alteration in cyclic nucleotides and the activation of neutrophils. Curr. Top. Membr. Transp. 35:399–424.

    Google Scholar 

  24. McPhail, L. C. and L. Harvath. 1993. Signal transduction in neutrophil oxidative metabolism and chemotaxis. In: The Neutrophil. J. S. Abramson and J. G. Wheeler, editors. IRL Press, New York. 63–107.

    Google Scholar 

  25. National Research Council. 1984. Nutrient Requirements of Poultry, 8th rev. ed. National Academy Press, Washington, D.C.

    Google Scholar 

  26. Kogut, M. H., E. D. McGruder, B. M. Hargis, D. E. Corrier, and J. R. DeLoach. 1995. In vivo activation of heterophil function in chickens following injection with Salmonella enteritidis-immune lymphokines. J. Leukoc. Biol. 57:56–62.

    Google Scholar 

  27. Kogut, M. H., C. Holtzapple, V. K. Lowry, K. Genovese, and L. H. Stanker. 1998. Functional responses of neonatal chicken and turkey heterophils following stimulation by inflammatory agonists. Am. J. Vet. Res. 59:1404–1408.

    Google Scholar 

  28. Merrill, G. A., R. Bretthauer, J. Wright-Hicks, and R. C. Allen. 1996. Oxygenation activities of chicken polymorphonuclear leukocytes investigated by selective chemiluminogenic probes. Lab. Anim. Sci. 46:530–538.

    Google Scholar 

  29. Bokach, G. M. and A. G. Gilman. Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin. Cell 39:301–308.

  30. Gallin, K. E. and L. C. Mikinny. 1990. Monovalent ion transport and membrane potential changes during activation in phagocytic leukocytes. Curr. Top. Membr. Transp. 35:127–152.

    Google Scholar 

  31. Bombara, C. J. and R. L. Taylor, JR. 1991. Signal transduction events in chicken interleukin-1 production. Poult. Sci. 70:1372–1380.

    Google Scholar 

  32. Moss, J. and Vaughn. 1988. ADP-ribosylation of guanyl nucleotidebinding regulatory proteins by bacterial toxins. Adv. Enzymol. Relat. Areas Mol. Biol. 66:303–379.

    Google Scholar 

  33. Gresham, H. D., L. T. Clement, J. E. Lehmeyer, F. M. Griffin, Jr., and J. E. Volanakis. 1986. Stimulation of human neutrophil Fc receptor-mediated phagocytosis by a low molecular weight cytokine. J. Immunol. 137:868–872.

    Google Scholar 

  34. Gresham, H. D., L. T. Clement, J. E. Volanakis, and E. J. Brown. 1987. Cholera toxin and pertussis toxin regulate the Fc receptormediated phagocytic response of human neutrophils in a manner analogous to regulation by monoclonal antibody 1C2. J. Immunol. 139:4159–4166.

    Google Scholar 

  35. Brown, E. J., A. M. Newell, and H. D. Gresham. 1987. Molecular regulation of phagocyte function. Evidence for involvement of a guanosine triphosphate-binding protein in opsonin-mediated phagocytosis by monocytes. J. Immunol. 139:3777–3786.

    Google Scholar 

  36. Feister, A. J., B. Browder, H. E. Willis, T. Mohanakumar, and S. Ruddy. Pertussis toxin inhibits human neutrophil responses mediated by the 42-kilodalton IgG Fc receptor. J. Immunol. 141:228–235.

  37. Bokoch, G. M. 1990. Signal transduction by GTP binding proteins during leukocyte activation: phagocytic cells. Curr. Top. Membr. Transp. 35:65–103.

    Google Scholar 

  38. Mayer, T., U. Regenass, D. Fabbro, E. Alteri, Jr., J. Rosel, M. Muller, G. Carvatti, and A. Matter. 1989. A derivative of staurosporin shows selectivity for protein kinase C inhibition and in vitro anti-proliferative as well as in vivo anti-tumor activity. Int. J. Cancer 43:851–856.

    Google Scholar 

  39. Utsumi, T., J. Klostergaard, K. Akimura, E. F. Sato, T. Yoshioka, and K. Utsumi. 1992. Effect of tumor necrosis factor-alpha on the stimulus-coupled responses of neutrophils and their modulation by various inhibitors. Physiol. Chem. Phy. Med. NMR 24:77–88.

    Google Scholar 

  40. Utsumi, T., J. Klostergaard, K. Akimura, K. Edashige, E. F. Sato, and K. Utsumi. 1992. Modulation of TNF-alpha-priming and stimulation-dependent superoxide generation in human neutrophils by protein kinase inhibitors. Arch. Biochem. Biophys. 294:271–278.

    Google Scholar 

  41. Watson, F., J. Robinson, and S. W. Edwards. 1991. Protein kinase C-dependent and independent activation of the NADPH oxidase of human neutrophils. J. Biol. Chem. 266:7432–7439.

    Google Scholar 

  42. Gaudry, M., A. C. Caon, and P. H. Naccache. 1993. Modulation of the activity and subcellular distribution of protein tyrosine kinases in human neutrophils by phorbol esters. FASEB J. 7:687–693.

    Google Scholar 

  43. Huang, C. K. 1989. Protein kinases in neutrophils: a review. Membr. Biochem. 8:61–81.

    Google Scholar 

  44. Morel, F., J. Doussiere, and P. V. Vignale. 1991. The superoxidegenerating oxidase of phagocytic cells. Physiological, molecular, and pathological aspects. Eur. J. Biochem. 201:523–530.

    Google Scholar 

  45. Nauseef, W. M., B. D. Volpp, S. McCormick, K. G. Leidal, and R. A. Clark. 1991. Assembly of the neutrophil respiratory burst oxide. Protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components. J. Biol. Chem. 266:5911–5923.

    Google Scholar 

  46. Naccache, P. H., C. Gilbert, A. C. Caon, M. Gaudry, C. K. Huang, V. A. Bonak, K. Umezawa, and S. R. McColl. 1990. Selective inhibition of human neutrophil functional responsiveness by erbstatin, an inhibitor of tyrosine protein kinase. Blood 76:2098–2104.

    Google Scholar 

  47. Phillips, W. A., S. Bassal, and S. P. Green. XXXX. Tyrosine phosphorylation: a signal for the activation of the phagocyte respiratory burst. Redox Report 1:83–88.

  48. Liu, F. and R. A. Roth. 1994. Insulin-stimulated tyrosine phosphorylation of protein kinase C alpha: evidence for direct interaction of the insulin receptor and protein kinase C in cells. Biochem. Biophys. Res. Commun. 200:1570–1577.

    Google Scholar 

  49. Kato, M., H. Kita, K. Tokuyama, and A. Morikawa. 1998. Signal transduction in activation of human eosinophils: G proteindependent and-independent pathways. Int. Arch. Allergy Immunol. 117:63–67.

    Google Scholar 

  50. Stephan, V., A. Seibt, D. Korholz, and V. Wahn. 1997. Expression of mRNA for the proto-oncogene c-FOS in rat basophilic leukemia cells. Cell Signalling 9:65–70.

    Google Scholar 

  51. Simms, H., R. Damico, and C. Garner. 1996. Polymorphonuclear leukocyte opsonic receptor expression after hypoxia reoxygenation. J. Lab. Clin. Med. 127:364–381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogut, M.H., Genovese, K.J. & Lowry, V.K. Differential Activation of Signal Transduction Pathways Mediating Phagocytosis, Oxidative Burst, and Degranulation by Chicken Heterophils in Response to Stimulation with Opsonized Salmonella enteritidis. Inflammation 25, 7–15 (2001). https://doi.org/10.1023/A:1007067426499

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007067426499

Keywords

Navigation