Skip to main content
Log in

Copper(II), nickel(II), cobalt(II) and oxovanadium(IV) complexes of substituted β-hydroxyiminoanilides

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Complexes of the general formula, ML2 [M = CuII, NiII, CoII and OVIV; L = 1,2,3,5,6,7,8,8a-octahydro-3-hydroxyimino-N-(4-X-phenyl)-l-phenyl-5-(phenylmethylene)-2-naphthalenecarboxamide (X = H, Me, OMe, Cl)] have been prepared and characterized on the basis of elemental analysis, magnetic moments and i.r., e.p.r. and electronic spectra. These metal complexes contain the N4 chromophore with the ligand coordinating through nitrogens of the azomethine and deprotonated anilide functions. C.v. measurements indicate that the copper(II) complexes are quasi-reversible in acetonitrile solution. Square planar and square pyramidal structures are assigned respectively to the copper(II) and oxovanadium(IV) complexes, whereas tetrahedral geometry is assigned to the nickel(II) and cobalt(II) complexes. Deprotonated anilide nitrogen is involved in coordination and the presence of an electron-donating group para to the anilide function decreases the ΔE values of the d–d transitions while the value is found to increase when electron-withdrawing groups are substituted. Line spacing in the e.p.r. spectra of the copper(II) and oxovanadium(IV) complexes increases when methyl group is para to the anilide group, and decreases when this group is replaced by methoxy or chloro. The ν(C–N) of the anilide group and the ν(C-N) of the azomethine function of the oxime metal complexes are metal-sensitive and the blue shift for the above stretching frequencies follows the order: copper(II) > oxovanadium(IV) > nickel(II) ≈ cobalt(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.S. Babu, A. Ramesh, P. Raguram and R. Ragavanaidu, Polyhedron, 1, 607 (1982)

    Article  CAS  Google Scholar 

  2. B.D. Gupta and W.U. Malik, Indian J. Chem., 7, 724 (1969).

    CAS  Google Scholar 

  3. J.W. Smith in S. Patai (Ed.), The Chemistry of Carbon-Nitrogen Double Bond, Interscience Publishers Ltd., London, 1970.

    Google Scholar 

  4. G. Wang and J.C. Chang, Synth. React. Inorg. Met-Org. Chem., 21, 897 (1991).

    CAS  Google Scholar 

  5. P.S. Patel, A. Ray and M.M. Patel, Proc. Indian Acad. Sci., Chem. Sci., 104, 471 (1992).

    CAS  Google Scholar 

  6. A. Sharma and R. Kumar, Bull. Chem. Soc Jpn., 66, 1084 (1993).

    CAS  Google Scholar 

  7. H. Diehl, The Application of the Dioximines to Analytical Chemistry, C.F. Smith & Co., Columbus, Ohio, 1940.

    Google Scholar 

  8. J. Das, J. Indian Chem. Soc., 54, 278 (1977).

    CAS  Google Scholar 

  9. K. Dey, J. Sci. Ind. Res., 33, 76 (1974).

    CAS  Google Scholar 

  10. A. Chakravorty, Coord. Chem. Rev., 13, 1 (1974).

    Article  CAS  Google Scholar 

  11. P.R. Athappan, S. Sevagapandian and G. Rajagopal, Synth. React. Inorg. Met.-Org. Chem., 26, 647 (1996).

    CAS  Google Scholar 

  12. L.J. Bellamy, The Infrared Spectra of Complex Molecules, 3rd Edn., Chapman & Hall, London, 1975.

    Google Scholar 

  13. H.A.O. Hill and K.A. Rospin, J. Chem. Soc., 619 (1969).

  14. A. Keterup and W. Riepe, Z. Anal. Chem., 252, 1 (1970).

    Article  Google Scholar 

  15. P.C. Trivedi and B.C. Halder, J. Indian Chem. Soc., 50, 81 (1973).

    CAS  Google Scholar 

  16. B.S. Pannu and S.L. Chopra, J. Indian Chem. Soc., 51, 387 (1974).

    CAS  Google Scholar 

  17. N. Nonayama, J. Inorg. Nucl. Chem., 37, 59 (1975).

    Article  Google Scholar 

  18. J. Lewis and R.G. Wilkins, Modern Coordination Chemistry, Interscience, New York, 1960.

    Google Scholar 

  19. I.S. Ahuja and R. Sriramulu, Indian J. Chem., 19A, 909 (1980).

    CAS  Google Scholar 

  20. M. Kelton, A.B.P. Lever and B.S. Ramasamy, Can. J. Chem., 48, 3185 (1970).

    Article  Google Scholar 

  21. S.F.A. Kettle, Coordination Compounds, ELBS (1969).

  22. A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1968.

    Google Scholar 

  23. C.J. Ballhausen and H.B. Gray, Inorg. Chem., 1, 111 (1962).

    Article  CAS  Google Scholar 

  24. R. Amudesan, J. Whelan and B. Bosnich, J. Am. Chem. Soc., 99, 6730 (1977).

    Article  Google Scholar 

  25. D. Kivelson and R. Neiman, J. Chem. Phys., 35, 149 (1961).

    Article  CAS  Google Scholar 

  26. J. Casanova, G. Alzueta, L. David and G. Gatteschi, Inorg. Chim. Acta, 211, 183 (1993)

    Article  CAS  Google Scholar 

  27. L.J. Boucher, E.C. Tynan and T.F. Yen, Spectral Properties of Oxovanadium(IV) Complexes in Electron Spin Resonance of Metal complexes., Plenum Press, New York, 1969.

    Google Scholar 

  28. F. Patrick, H. Britt, M.K. Calson and O. Hodgson, Inorg. Chem., 33, 3794 (1994).

    Article  Google Scholar 

  29. P.S. Zacharias and A. Ramachandriah, Polyhedron, 4, 113 (1985).

    Article  Google Scholar 

  30. S.K. Mandal and K. Nag, J. Chem. Soc., Dalton Trans., 2429 (1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevagapandian, S., Rajagopal, G., Nehru, K. et al. Copper(II), nickel(II), cobalt(II) and oxovanadium(IV) complexes of substituted β-hydroxyiminoanilides. Transition Metal Chemistry 25, 388–393 (2000). https://doi.org/10.1023/A:1007067326655

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007067326655

Keywords

Navigation