Skip to main content
Log in

Quantum well and quantum dot lasers: From strained-layer and self-organized epitaxy to high-performance devices

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Strained heterostructures are now widely used to realize high-performance lasers. Highly mismatched epitaxy also produces defect-free quantum dots via an island growth mode. The characteristics of high-speed strained quantum well and quantum dot lasers are described. It is seen that substantial improvements in small-signal modulation bandwidth are obtained in both 1 μm (48 GHz) and 1.55 μm (26 GHz) by tunneling electrons directly into the lasing sub-band. In quantum dots the small-signal modulation bandwidth is limited by electron-hole scattering to ∼7 GHz at room temperature and 23 GHz at 80 K. The properties of these devices are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhattacharya, P., J. Singh, H. Yoon, X. Zhang, A. Gutierrez-Aitken and Y. Lam. ‘Tunneling injection lasers: A new class of lasers with reduced hot carrier effects’. IEEE J. Quantum Electron. 32 1620, 1996.

    Google Scholar 

  • Bimberg, D., N.N. Ledenstov, O. Stier, D. Bimberg, V.M. Ustinov, P.S. Kop'ev and Zh.I. Alferov. ‘InAs-GaAs quantum pyramid lasers: In situ growth, radiative lifetimes and polarization properties’. Jpn. J. Appl. Phys. 35 1311, 1996.

    Google Scholar 

  • Bimberg, D., N. Kirstaedter, N.N. Ledenstov, Zh.I. Alferov, P.S. Kop'ev and V.M. Ustinov. ‘InGaAs-GaAs quantum dot lasers’. IEEE J. Select. Topics in Quantum Electron. 3 196, 1997.

    Google Scholar 

  • Girardin, F., G. Duan, P. Gallion, A. Talneau and A. Qugazzaden. ‘Experimental investigation of the relative importance of carrier heating and spectral-hole-burning on nonlinear gain in bulk and strained multi-quantum-well 1.55 μm lasers’. Appl. Phys. Lett. 67 771, 1995.

    Google Scholar 

  • Grupen M. and K. Hess. `Severe gain suppression due to dynamic carrier heating in quantum well lasers’. Appl. Phys. Lett. 70 808, 1997.

    Google Scholar 

  • Kamath, K., P. Bhattacharya, T. Sosnowski, T. Norris and J. Philips. ‘Room temperature operation of In0.4Ga0.6As/GaAs self-organized quantum dot lasers’. Electron. Lett. 32 1374, 1996.

    Google Scholar 

  • Klotzkin, D., K-C. Syao, P. Bhattacharya, C. Caneau and R. Bhat. ‘Modulation characteristics of high speed (f -3dB = 20 GHz) tunneling injection InP/InGaAsP 1.55 μm ridge waveguide lasers extracted from optical and electrical measurements’. J. Lightwave Technol. 15 2141, 1997.

    Google Scholar 

  • Matsui, Y., H. Murai, S. Arahira, S. Kutsuzawa and Y. Ogawa. ‘30 GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser’. IEEE Photon. Tech. Lett. 9 25, 1997.

    Google Scholar 

  • Mirin, R., A. Gossard and J. Bowers. ‘Room temperature lasing from InGaAs quantum dots’. Electron. Lett. 32 1732, 1996.

    Google Scholar 

  • Morton, P.A., R.A. Logan, T. Tanbun-Ek, P.F. Sciortino, Jr., A.M. Sergent, R.K. Montgomery and B.T. Lee. ‘25 GHz bandwidth 1.55 lm GaInAsP p-doped strained multiquantum-well lasers’. Electron. Lett. 28 2156, 1992.

    Google Scholar 

  • Morton, P.A., T. Tanbun-Ek, R.A. Logan, A.M. Sergent, P.F. Sciortino, Jr. and D.L. Coblentz. ‘Frequency response subtraction for simple measurement of intrinsic laser dynamic properties’. IEEE Photon. Tech. Lett. 4 133, 1992b.

    Google Scholar 

  • Ralston, J.D., S. Weisser, I. Esquivias, E.C. Larkins, J. Rosenzweig, P.J. Tasker and J. Fleissner. ‘Control of di.erential gain, nonlinear gain, and damping factor for high-speed application of GaAs-based MQW lasers’. IEEE J. Quantum Electron. 29 1648, 1993.

    Google Scholar 

  • Rideout, W., W.F. Sharfin, E.S. Koteles, M.O. Bassell and B. Elman. ‘Well-barrier hole burning in quantum well lasers’. IEEE Photon. Tech. Lett. 3 784, 1991.

    Google Scholar 

  • Schatz, R., O. Kjebon, S. Lourdudoss, S. Nilsson and B. Stalnacke. ‘30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 lm wavelength’. Electron. Lett. 33 488, 1997.

    Google Scholar 

  • Shoji, H., Y. Nakara, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama and H. Ishikawa. ‘Temperature dependent lasing characteristics of multi-stacked quantum dot lasers’. Appl. Phys. Lett. 71 193, 1997.

    Google Scholar 

  • Sosnowski, T.S., T.B. Norris, H. Jiang, J. Singh, K. Kamath and P. Bhattacharya. ‘Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopy’. Phys. Rev. B57 R9423, 1998.

    Google Scholar 

  • Sung, C.Y., T.B. Norris, X. Zhang, J. Singh and P. Bhattacharya. 'studies of carrier relaxation in low dimensional structures', presented at the Modulated Semiconductor Structures Conference, Spain, July 1995.

  • Tatham, M.C., I.F. Lealman, Colin P. Seltzer, L.D. Westbrook and D.M. Cooper. ‘Resonance frequency, damping, and di.erential gain in 1.5 μm multiple quantum-well lasers’. IEEE J. Quantum Electron. 28 408, 1992.

    Google Scholar 

  • Tsai, C.-Yi, C.-Yao Tsai, Y.-H. Lo, R.M. Spencer and L.F. Eastman. ‘Nonlinear gain coefficients in semiconductor quantum-well lasers: effects of carrier di.usion, capture, and escape’. J. Select. Topics Quantum Electron. 1 316, 1995.

    Google Scholar 

  • Uomi, K., T. Mishima and N. Chinone. ‘Modulation-doped multi-quantum well (MD-MQW) lasers. I. Experiment’. Jpn. J. Appl. Phys. 29 88, 1990.

    Google Scholar 

  • Weisser, S., J.D. Ralston, E.C. Larkins, I. Esquivias, P.J. Tasker, J. Fleissner and J. Rosenzweig. ‘Efficient high-speed direct modulation in p-doped In0.35Ga0.65As/GaAs multiquantum well lasers’. Electron. Lett. 28 2141, 1992.

    Google Scholar 

  • Weisser, S., et al. ‘Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers’. IEEE Photon. Tech. Lett. 8 608, 1996.

    Google Scholar 

  • Yu, R., R. Nagarajan, T. Reynolds, A. Homes, J. Bowers, S. DenBaars and C. Zah. ‘Ultrahigh speed performance of a quantum well laser at cryogenic temperatures’. Appl. Phys. Lett. 65 528, 1994.

    Google Scholar 

  • Zhao, B., T.R. Chen and A. Yariv. ‘The extra di.erential gain enhancement in multiple-quantum-well lasers’. IEEE Photon. Tech. Lett. 4 124, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, P. Quantum well and quantum dot lasers: From strained-layer and self-organized epitaxy to high-performance devices. Optical and Quantum Electronics 32, 211–225 (2000). https://doi.org/10.1023/A:1007065203823

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007065203823

Navigation