Skip to main content
Log in

Solution studies on trace metal ion interactions with adenine as primary ligand and 5-halouracils as secondary ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The interaction of trace metal ions, viz. MnII, CoII, NiII, CuII, ZnII and CdII with adenine (A) as primary ligand and 5-halouracils, viz. 5-bromouracil (5BrU) and 5-iodouracil (5IU) as secondary ligands (L) has been studied at 25±0.1°C and at constant ionic strength (μ=0.1M NaNO3), in an aqueous medium using Bjerrum–Calvin's pH-titration technique as adopted by Irving and Rossotti for binary (ML), and by Chidambaram and Bhattacharya for ternary (MAL) systems respectively. The experimental pH-titration data were analyzed with the aid of the BEST computer program in order to evaluate formation constants of various intermediate complex species formed in binary and ternary systems involving nucleobases (viz. A, 5BrU and 5IU). The relative stability of each ternary complex was compared with that of the corresponding binary complexes in terms of ΔlogK values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Lewis and G.M. Tarrant, Mutation, 12, 349 (1971).

    Google Scholar 

  2. P.M. Aebersold, Cancer Res., 39, 808 (1979).

    Google Scholar 

  3. E. Freese, J. Mol. Biol., 1, 87 (1959).

    Google Scholar 

  4. R.S. Lasken and M.F. Goodman, J. Biol. Chem., 259, 1149 (1984); Proc. Natl. Acad. Sci., USA, 82, 1301 (1985).

    Google Scholar 

  5. R.B. Cumming, Water Chlorination, Environ. Impact Health E.. Proc. Conf., 1, 229 (1975).

    Google Scholar 

  6. L. Stryer, Biochemistry, Freeman International Edit., Japan 1975.

  7. I. Nabih and A. El. Ansary, Cell Mol. Biol. 27, 271 (1981).

    Google Scholar 

  8. M.P. Shlemkevich, Vohr. Med. Khim., 29, 17 (1983).

    Google Scholar 

  9. R.J. Rutman, A. Cantarow and K.E. Paschkis, Cancer Res., 14, 119 (1954).

    Google Scholar 

  10. Y.L. Tan and A. Beck, Biochem. Biophys. Acta, 229, 500 (1979).

    Google Scholar 

  11. B.S. Sekhon, J. Indian Chem. Soc., 64, 308 (1987).

    Google Scholar 

  12. C. Heidelberger, N.K. Chaudhury, P. Danneberg, D. Mooren, L. Grilshach, R. Duschinsky, R.J. Schnitzer, E. Pleven and J. Scheiner, Nature, 179, 663 (1957).

    Google Scholar 

  13. J.J. Fox and I. Wempen, J. Med. Chem., 9, 101 (1966).

    Google Scholar 

  14. F. Boccardo and L. Canobbio, Chemotherapia, 2, 88, 180 (1983).

    Google Scholar 

  15. M. Iigo and A. Hoshi, Cancer Res., 43, 5687 (1983); Cancer Chemother. Pharmacol., 13, 86 (1983).

    Google Scholar 

  16. A. Albert, Aust. J. Sci., 1, 30 (1967).

    Google Scholar 

  17. J. Schubert, Sci. Am., 40, 214 (1966).

    Google Scholar 

  18. S. Kirschner, Y.K. Wei, D. Francis and J.G. Bergman, J. Med. Chem., 9, 369 (1966).

    Google Scholar 

  19. S.E. Livingstone, J.D. Nolan and A.E. Mihkelson, Inorg. Chem., 7, 1447 (1968); 9, 2545 (1970).

    Google Scholar 

  20. B. Rosenberg and L. van Camp, Nature, 222, 385 (1969); Cancer Res., 30, 1799 (1970).

    Google Scholar 

  21. A.I. Stetsenko in K.B. Yatsimirskii (Ed), Biol. Aspekty. Koord. Khim. (Lektsii. Dokl. Shk. Bionerg. Khim.), Naukovo Dumka, Kiev, USSR (Russ.), 1, 24 (1977).

  22. D.N. Bochkov, N.A. Smorygo and B.A. Ivin, Koord. Khim. (Russ.), 9, 410 (1983); Zh. Obshch. Khim. (Russ.), 54, 900 (1984).

    Google Scholar 

  23. J.P. Davidson, P.J. Faber, R.G. Fischer, S. Mansy, J.H. Peresie, B. Rosenberg and L. van Camp, Cancer Chemotheraphy Rep., 59, 287 (1975).

    Google Scholar 

  24. T. Tominago, Y. Yoshida, G. Kasaki and M. Kukihara, Jpn., J. Cancer Res., 84, 783 (1993).

    Google Scholar 

  25. R.J. Tallarida and M.A. Sirover, J. Pharmacol. Exp. Ther., 269, 39 (1994).

    Google Scholar 

  26. A. Yanagawa, PCT Int. Appl. WO 93 21, 922, p.15 (1992)

    Google Scholar 

  27. G.D. Christian and W.C. Purdy, Biochem. Biophys. Acta, 54, 587 (1961); J. Electroanal. Chem., 2, 293 (1961).

    Google Scholar 

  28. U.P. Singh, R. Ghose and A.K. Ghose, Indian J. Cancer Chemother. 31, 33 (1991).

    Google Scholar 

  29. C. Helene and J.C. Maurizot, Crit. Rev. Biochem., 11, 213 (1981).

    Google Scholar 

  30. A. Bere and C. Helene, Biopolymers, 18, 2659 (1979).

    Google Scholar 

  31. R. Koren and A.S. Mildvan, Biochemistry, 16, 241 (1977).

    Google Scholar 

  32. B.L. Beam, R. Koren and A.S. Mildvan, Biochemistry, 16, 3322 (1979).

    Google Scholar 

  33. C. Helene, Nucleic Acid Res., 2, 961 (1975).

    Google Scholar 

  34. M. Sabat, K.A. Satyshur and M. Sunderlingam, J. Am. Chem. Soc., 105, 976 (1983).

    Google Scholar 

  35. J. Bjerrum, Metal Ammine Complex Formation in Aqueous Solution, Haase, Copenhagen, 1941.

  36. M. Calvin and K.W. Wilson, J. Am. Chem. Soc., 67, 2003 (1945).

    Google Scholar 

  37. H.M. Irving and H.S. Rossotti, J. Chem. Soc., 3397 (1953); 2904 (1954).

  38. M.V. Chidambaram and P.K. Bhattacharya, J. Inorg. Nucl. Chem., 32, 3271 (1970).

    Google Scholar 

  39. H.A. Flaschka, EDTA Titrations, Pergamon, Oxford, 2nd Edit., 1964.

    Google Scholar 

  40. A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, ELBS and Longman Ltd., London, 4th Edit., 1978, p. 421.

    Google Scholar 

  41. R.J. Motekaitis and A.E. Martell, Determination and use of Stability Constants, VCH Publishers, New York, 1989; Can. J. Chem., 60, 168, 2403, (1982).

    Google Scholar 

  42. R. Nayan and A.K. Dey, J. Indian Chem. Soc., 50, 98 (1973); 52, 1020 (1975); 54, 759 (1977); Indian J. Chem., 10, 109 (1972); Z. Naturforsch. Teil. B, 27, 688 (1972).

    Google Scholar 

  43. M.S. Mohamed, M.M. Khater and E.M. Shonkry, Indian J. Chem., 25, 488 (1986).

    Google Scholar 

  44. H. Irving and R.J.P. Williams, Nature, 162, 746 (1948); J. Chem. Soc., 3192 (1953).

    Google Scholar 

  45. J. Lewis and R.G. Wilkins, Modern Coordination Chemistry, Interscience, New York, 1960.

  46. J.D. Lee, Concise Inorganic Chemistry, Chapman and Hall Ltd., London, 4th Edit., 1991.

    Google Scholar 

  47. C. Jean-Piere, S. Michael and L.B. Andre, Inorg. Chim. Acta, 80, L57 (1983).

    Google Scholar 

  48. P.R. Rastogi, M. Singh and R. Nayan, J. Indian Chem. Soc., 68, 158 (1991); 70, 795 (1993).

    Google Scholar 

  49. P.R. Reddy and H.M. Reddy, Polyhedron, 2, 1171 (1983); J. Chem. Soc., Dalton Trans., 239 (1985).

    Google Scholar 

  50. H. Sigel, Angew Chem. Int. Edn. Engl., 14, 394 (1975).

    Google Scholar 

  51. G. Arena, R. Call, V. Cueinotta, S. Musumeci, E. Rizzarelli and S. Sammarfano, J. Chem. Soc., Dalton Trans., 1651 (1984).

  52. G.N. Mukherjee and T.K. Ghose, J. Indian Chem. Soc., 71, 249 (1994); Indian J. Chem., 31, 478 (1992).

    Google Scholar 

  53. H.A. Azab, A.M. El-Nady, S.A. El-Korashy and M.A. Hamed, J. Chem. Eng. Data, 40, 53 (1995).

    Google Scholar 

  54. B.T. Khan, K.M. Mohan and G.N. Goud, Transition Met. Chem., 15, 407 (1990); Indian J. Chem., 31, 28, 106 (1992).

    Google Scholar 

  55. P.R. Reddy and K. Sudhakar, Indian J. Chem., 29, 158, 1182 (1990).

    Google Scholar 

  56. P.R. Reddy and M.R.P. Reddy, Indian J. Chem., 29, 1008 (1990).

    Google Scholar 

  57. D.J. Hodgson, Prog. Inorg. Chem., 23, 211 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Singh, R., Babbar, P. et al. Solution studies on trace metal ion interactions with adenine as primary ligand and 5-halouracils as secondary ligands. Transition Metal Chemistry 25, 9–16 (2000). https://doi.org/10.1023/A:1007061109703

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007061109703

Keywords

Navigation