Skip to main content
Log in

Characterization of Saccharomyces cerevisiae strains expressing ira1 mutant alleles modeled after disease-causing mutations in NF1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The 2818 amino acids of neurofibromin, the product of the human NF1 gene, include a 230 amino acid Ras-GAP related domain (GRD). Functions which may be associated with the rest of the protein remain unknown. However, many NF1 mutations in neurofibromatosis 1 patients are found downstream of the GRD, suggesting that the C-terminal region of the protein is also functionally important. Since the C-terminal region of neurofibromin encompassing these mutations is homologous with the corresponding regions in the two Saccharomyces cerevisiae Ras-GAPs, Ira1p and Ira2p, we chose yeast as a model system for functional exploration of this region (Ira-C region). Three missense mutations that affect the Ira-C region of NF1 were used as a model for the mutagenesis of IRA1. The yeast phenotypes of heat shock sensitivity, iodine staining, sporulation efficiency, pseudohyphae formation, and GAP activity were scored. Even though none of the mutations directly affected the Ira1p-GRD, mutations at two of the three sites resulted in a decrease in the GAP activity present in ira1 cells. The third mutation appeared to disassociate the phenotypes of sporulation ability and GAP activity. This and other evidence suggest an effector function for Ira1p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richardi VM, Eichner TE: Neurofibromatosis: Phenotype, Natural History and Pathogenesis. John Hopkins University Press, Baltimore, MD, 1986

    Google Scholar 

  2. Marchuk DA, Saulino AM, Tavakkol RL, Swaroop M, Wallace MR, Andersen LB, Mitchell AL, Gutmann DH, Boguski M, Collins FS: cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics 11: 931–940, 1991

    PubMed  Google Scholar 

  3. Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, Fountain JM, Brereton A, Nicholson J, Mitchel AL, Brownstein BH, Collins FS: Type 1 neurofibromatosis gene: Identification of a large transcript disrupted in three NF1 patients. Science 249: 181–186, 1990

    PubMed  Google Scholar 

  4. McCormick F: ras GTPase activating protein: Signal transmitter and signal terminator. Cell 56: 5–8, 1989.

    PubMed  Google Scholar 

  5. Xu G, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F: The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants in Saccharomyces cerevisiae. Cell 63: 835–841, 1990

    PubMed  Google Scholar 

  6. Martin GA, Viskochil D, Bollag G, McCabe P, Crosier WJ, Haubrock H, Conroy L, Clark R, O'Connell P, Cawthon RM, Annis MA, McCormick F: The GAP-related domain of the NF1 gene product interacts with ras p21. Cell 63: 843–849, 1990

    PubMed  Google Scholar 

  7. Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, Collins F: The NF1 locus encodes a protein functionally related to mammalian GAP and yeast Ira proteins. Cell 63: 851–859, 1990

    PubMed  Google Scholar 

  8. Al-Alawi N, Xu G, White R, Clark R, McCormick F, Feramisco JR: Differential regulation of cellular activities by GTPase-activating protein and NF1. Mol Cell Biol 13: 2497–2503, 1993

    PubMed  Google Scholar 

  9. Wittinghofer A, Scheffzek K, Ahmadian MR: The interaction of Ras with GTPase-activating proteins. FEBS Lett 410: 63–67, 1997

    PubMed  Google Scholar 

  10. Bernards A: Neurofibromatosis type 1 and Ras-mediated signaling: Filling in the GAPs. Biochim Biophys Acta 1242: 43–59, 1995

    PubMed  Google Scholar 

  11. Gibbs JB, Schaber MD, Marshall MS, Scolnick EM, Sigal IS: Identification of guanine nucleotides bound to ras-encoded proteins in growing yeast cells. J Biol Chem 262: 10426–10429, 1987

    PubMed  Google Scholar 

  12. Hall A: ras and GAP – Who's controlling whom? Cell 61: 921–923, 1990

    PubMed  Google Scholar 

  13. Viskochil D, White R, Cawthon R: The neurofibromatosis type 1 gene. Annu Rev Neurosci 16: 183–205, 1993

    PubMed  Google Scholar 

  14. The I, Hannigan GE, Cowley GS, Reginald S, Zhong Y, Gusella JF, Hariharan IK, Bernards A: Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276: 791–794, 1997

    PubMed  Google Scholar 

  15. Guo H-F, The I, Hannan F, Bernards A, Zhong Y: Requirement of Drosophila NF1 for activation of adenyl cyclase by PACAP38-like neuropeptides. Science 276: 795–798, 1997

    PubMed  Google Scholar 

  16. Mitts MR, Bradshaw-Rouse J, Heideman W: Interactions between adenylate cyclase and the yeast GTPase-activating protein Ira1. Mol Cell Biol 11: 4591–4598, 1991

    PubMed  Google Scholar 

  17. Xu G, O'Connell P, Viskochil D, Cawthon R, Robertson M, Culver M, Dunn D, Stevens J, Gesteland R, White R, Weiss B: The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62: 599–608, 1990

    PubMed  Google Scholar 

  18. Tanaka K, Nakafuku M, Tamanoi F, Zakiro Y, Matsumoto, Toh-E A: IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol Cell Biol 10: 4303–4313, 1990

    PubMed  Google Scholar 

  19. Li Y, Bollag G, Clark L, Stevens J, Conroy L, Fults D, Ward K, Friedman E, Samowitz W, Robertson M, Bradley P, McCormick F, White R, Cawthon R: Somatic mutations in the neurofibromatosis 1 gene in human tumors. Cell 69: 275–281, 1992

    PubMed  Google Scholar 

  20. Upadhyaya M, Shaw DJ, Harper PS: Molecular basis of neurofibromatosis type 1 (NF1): Mutation analysis and polymorphisms in the NF1 gene. Hum Mut 4: 83–101, 1994

    PubMed  Google Scholar 

  21. Tanaka K, Matsumoto K, Toh-E A: IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae. Mol Cell Biol 9: 757–768, 1989

    PubMed  Google Scholar 

  22. Zagulski M, Becam AM, Grzybowska E, Lacroute F, Migdalski A, Slonimski PP, Sokolowska B, Herbert CJ: The sequence of 12.5 Kb from the right arm of chromosome II predicts a new N-terminal sequence for the Ira1 protein and reveals two new genes, one of which is a DEAD-box helicase. Yeast 10: 1227–1234, 1994

    PubMed  Google Scholar 

  23. Kataoka T, Powers S, MacGitt C, Fasano O, Strathern J, Broach J, Wigler M: Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37: 437–445, 1984

    PubMed  Google Scholar 

  24. Sherman F, Fink GR, Hicks JB: Laboratory Course Manual for Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1986

    Google Scholar 

  25. Scheistl RH, Geitz RD: High efficiency transformation of intact yeast cells by single stranded nucleic acid as a carrier. Curr Genet 16: 339–346, 1989

    PubMed  Google Scholar 

  26. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989

    Google Scholar 

  27. Holm C, Meeks-Wagner DW, Fangman WL, Botstein D: A rapid and efficient method for isolating DNA from yeast. Gene 42: 169–173, 1986

    PubMed  Google Scholar 

  28. Boeke JD, LaCroute F, Fink GR: A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197: 345–346, 1984

    PubMed  Google Scholar 

  29. Vernet T, Dignard D, Thomas DY: A family of yeast expression vectors containing the phage f1 intergenic region. Gene 52: 225–233, 1987

    Article  PubMed  Google Scholar 

  30. Chester VE: Heritable glycogen-storage deficiency in yeast and its induction by ultra-violet light. J Gen Microbiol 51: 49–56, 1968

    PubMed  Google Scholar 

  31. Herskowitz I, Jensen RE: Putting the HO gene to work: Practical uses for mating-type switching. Meth Enzymol 194: 132–145, 1991

    PubMed  Google Scholar 

  32. Gietz RD, Sugino A. New yeast – Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527–534, 1988

    Google Scholar 

  33. Marshall MS, Gibbs JB, Scolnick EM, Sigal IG: Regulatory function of the Saccharoyces cerevisiae RAS C-terminus. Mol Cell Biol 7: 2309–2315, 1987

    PubMed  Google Scholar 

  34. Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR: Unipolar cell divisions in the yeast Saccharomyces cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68: 1077–1090, 1992

    PubMed  Google Scholar 

  35. Scheele JS, Rhee JM, Boss GR: Determination of absolute amounts of GDP and GTP bound to Ras in mammalian cells: Comparison of parental and Ras-overproducing NIH 3T3 fibroblasts. Proc Natl Acad Sci USA 92: 1097–1100, 1995

    PubMed  Google Scholar 

  36. Tamanoi F, Walsh M, Kataoka T, Wigler M: A product of yeast RAS2 gene is a guanine nucleotide binding protein. Proc Natl Acad Sci USA 81: 6924–6928, 1984

    PubMed  Google Scholar 

  37. Furth ME, Davis LJ, Fleurdelys B, Scolnick EH: Monoclonal antibodies to the p21 products of the transforming gene of Harvey sarcoma virus and of the cellular ras family. J Virol 43: 294–304, 1982

    PubMed  Google Scholar 

  38. Cheer S, Gentile JH, Hegre CS: Improved methods for ATP analysis. Anal Biochem 60: 102–114, 1974

    PubMed  Google Scholar 

  39. Cawthon RM, Weiss R, Xu~g, Viskochil D, Culver M, Stevens J, Robertson M, Dunn D, Gesteland R, O'Connell P, White R: A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62: 193–201, 1990

    PubMed  Google Scholar 

  40. Tassabehji M, Srachan T, Sharland M, Colley A, Donnai D, Harris R, Thakker N: Tandem duplication within a neurofibromatosis type 1 (NF1) gene exon in a family with features of Watson Syndrome and Noonan Syndrome. Am J Hum Genet 53: 90–95, 1993

    PubMed  Google Scholar 

  41. Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi F, Northup J, Wigler M: Differential activation of yeast adenylate cyclase by wildtype and mutant ras proteins. Cell 41: 763–769, 1985

    PubMed  Google Scholar 

  42. Gunja-Smith Z, Patil NB, Smith EE: Two pools of glycogen in Saccharomyces. J Bacteriol 130: 818–825, 1977

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gil, R., Seeling, J.M. Characterization of Saccharomyces cerevisiae strains expressing ira1 mutant alleles modeled after disease-causing mutations in NF1. Mol Cell Biochem 202, 109–118 (1999). https://doi.org/10.1023/A:1007058427880

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007058427880

Navigation