Skip to main content
Log in

Ultrafast response of multi-energy proton-bombarded GaAs photoconductors

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We have investigated the ultrafast optical and optoelectronic characteristics of multi-energy proton-bombarded GaAs (GaAs:H+) material and devices in some detail. Photo-excited carrier lifetimes of GaAs:H+ were observed to be as low as 350 ± 50 fs. Photoconductive switches (PCS) fabricated on GaAs:H+ were found to exhibit lower dark currents (15 nA at a bias of 10 V) and higher breakdown voltage (> 100 kV/cm) than PCS's fabricated on semi-insulating (S.I.) GaAs. The temporal response of the GaAs:H+ PCS was about 2 ps at full-wave half minimum. Optically excited terahertz (THz) radiation from GaAs:H+ was reported for the first time to our knowledge. The temporal response and spectral bandwidth of the emitted THz radiation were 0.7 ps and 1.25 THz, respectively. The field strength of the THz signal was about 20 mV/cm. From the THz data, we are able to deduce that the effective carrier mobility of GaAs:H+ was less than 1 cm2/V-sec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous. Special Issue on Low Temperature Grown GaAs and Related Materials. J. Electronic Mater. 22(12) Dec. 1993.

  • Anonymous. Special Issue on the Optical and Electron-Beam Control of Semiconductor Switches. IEEE Trans. Electron Devices 37(12) 1990.

  • Chen, Y., S. Williamson, T. Brook, F.W. Smith and A.R. Calawa. 375-GHz-Bandwidth Photoconductive Detector. Appl. Phys. Lett. 59 1984-1986, 1991.

    Google Scholar 

  • Chou, S.Y., Y. Liu, W. Khalil, T.Y. Hsiang and S. Alexandrou. Ultrafast Nanoscale Metal-Semiconductor-Metal Photodetectors on Bulk on Low-Temperature Grown GaAs. Appl. Phys. Lett. 61(7) 819-821, 1992.

    Google Scholar 

  • Claverie, A., F. Namavar and Z. Liliental-Weber. Formation of As Precipitates in GaAs by Ion Implantation and Thermal Annealing. Appl. Phys. Lett. 62 1271-1273, 1993a.

    Google Scholar 

  • Claverie, A., F. Namavar, Z. Lilienthal-Weber, P. Dreszer and E.R. Weber. Semi Insulating GaAs Made by As Implantation and Thermal Annealing. Mater. Sci. and Eng. B 22 37-40, 1993b.

    Google Scholar 

  • Ejimanya, J.I. Current-Voltage Characteristics of Proton-Bombarded Au-GaAs Contacts. Solid State Electron. 29 841-844, 1986.

    Google Scholar 

  • Esser, A., W. Kutt, M. Strahnen, G. Maidorn and H. Kurz. Femtosecond Transient Reflectivity Measurements as a Probe for Process-Induced Defects in Silicon. Appl. Surf. Sci. 46 446-450, 1990.

    Google Scholar 

  • Ganikhanov, F., G.-R. Lin, W.-C. Chen, C.-S. Chang and C.-L Pan. Subpicosecond Carrier Lifetime in Arsenic-Ion-Implanted GaAs. Appl. Phys. Lett. 67 3465-3467, 1995.

    Google Scholar 

  • Greene, B.I., P.N. Saeta, D.R. Dykaar, S. Schmitt-Rink and S.L. Chuang. Far-Infrared Light Generation at Semiconductor Surfaces and Its Spectroscopic Applications. IEEE J. Quantum Electron. 28 2302-2312, 1992.

    Google Scholar 

  • Hu, B.B., X.-C. Zhang and D.H. Auston. Terahertz Radiation Induced by Subband-Gap Femtosecond Optical Excitation of GaAs. Phys. Rev. Lett. 67 2709-2712, 1991.

    Google Scholar 

  • Johnson, M.B., T.C. McGill and N.G. Paulter. Carrier Lifetimes in Ion-damaged GaAs. Appl. Phys. Lett. 54 2424-2426, 1989.

    Google Scholar 

  • Kaminska, M., E.R. Weber, Z. Lilental-Weber, R. Leon and Z.U. Rek. Stoichiometry-Related Defects in GaAs Grown by Molecular-Beam Epitaxy at Low Temperatures. J. Vac. Sci. Technol. B 4 710-713, 1989.

    Google Scholar 

  • Krotkus, A., S. Marcinkevicius, J. Jasinski, M. Kaminska, H.H. Tan and C. Jagadish. Picosecond Carrier Lifetime in GaAs Implanted with High Doses of As ions: an Alternative Material to Low-Temperature GaAs for Optoelectronic Applications. Appl. Phys. Lett. 66 3304-3306, 1995.

    Google Scholar 

  • Krotkus, A., S. Marcinkevicius, J. Jasinski, M. Kaminska, H.H. Tan and C. Jagadish. Picosecond Carrier Lifetime in GaAs Implanted with High Doses of As ions: an Alternative Material to Low-Temperature GaAs for Optoelectronic Applications. Appl. Phys. Lett. 66 3304-3306, 1995.

    Google Scholar 

  • Lambsdro., M., J. Kuhl, J. Rosenzweig, A. Axmann and J. Schneider. Subpicosecond Carrier Lifetimes in Radiation-Damaged GaAs. Appl. Phys. Lett. 58 1881-1883, 1991.

    Google Scholar 

  • Lin, G.-R. and C.-L. Pan. Picosecond Responses of Low-dosage Arsenic-Ion-Implanted GaAs Photo-conductors. Appl. Phys. Lett. 71 2901-2903, 1997.

    Google Scholar 

  • Lin, G.-R. and C.-L. Pan. Characterization of Optically Excited THz Radiation from Arsenic-ion-implanted GaAs. Appl. Phys. B, 1999.

  • Lin, G.-R., W.-C. Chen, C.-S. Chang and C.-L. Pan. Electrical Characterization of Arsenic-Ion-Implanted Semi-Insulating GaAs by Current-Voltage Measurement. Appl. Phys. Lett. 65 3272-3274, 1994.

    Google Scholar 

  • Lin, G.-R., W.-C. Chen, S.-C. Chou, C.-S. Chang, K.-H. Wu and C.-L. Pan. Material and Ultrafast Optical Characterization of High-Resistive Arsenic-Ion-Implanted GaAs. IEEE J. Quantum Electron. 34 1740-1748, 1998.

    Google Scholar 

  • Lochtefeld, A.J., M.R. Melloch, J.C.P. Chang and E.S. Harmon. The Role of Point Defects and Arsenic Precipitates in Carrier Trapping and Recombination in Low-Temperature Grown GaAs. Appl. Phys. Lett. 69 1465-1467, 1996.

    Google Scholar 

  • Look, D.C., D.C. Walters, M.O. Manasreh, J.R. Sizelove and C.E. Stutz. Anomalous Hall-Effect Results in Low-Temperature Molecular-Beam-Epitaxy GaAs: Hopping in a Dense EL-2 Like Band. Phys. Rev. B 42 3578-3581, 1990.

    Google Scholar 

  • McIntosh, K.A., K.B. Nichols, S. Verghese and E.R. Brown. Investigation of Ultrashort Photocarrier Relaxation Times in Low-Temperature-Grown GaAs. Appl. Phys. Lett. 70 354-356, 1997.

    Google Scholar 

  • Paulter, N.G., A.J. Gibbs and D.N. Sinha. Fabrication of High-Speed GaAs Photoconductive Pulse Generators and Sampling Gates by Ion Implantation. IEEE Trans. Electron. Dev. 65 2343-2348, 1988.

    Google Scholar 

  • Schumacher, H., U. Salz and H. Beneking. Fast GaAs Photoconductive Detectors with High Sensitivity Integrated in Coplanar Systems onto GaAs Substrate. In Picosecond Electronics and Optoelectronics II, eds. Leonberger, F.J., C.H. Lee, F. Capasso and H. Morkoc, 209-213, 1987.

  • Shen, H., Y. Jin, G.A. Wagoner, X.-C. Zhang and L. Kingsley. Time-resolved Optoelectronic Measurements of Nitrogen-Implanted GaAs. Ultrafast Phenomena IX, Springer Series in Chemical Physics, vol. 60, pp. 372-374, Springer-Verlag Berlin Heidelberg, 1994.

    Google Scholar 

  • Shober, T., J. Friedrich and A. Altmann. Proton Implantation into GaAs: Transmission Electron Microscopy Results. J. Appl. Phys. 71 2206-2210, 1992.

    Google Scholar 

  • Smith, R.A. Semiconductors. 2nd edn, Chap. 9 273-279, Cambridge University Press, 1978.

  • Smith, F.W., H.Q. Le, V. Diaduik, M.A. Hollis, A.R. Calawa, S. Gupta, M. Frankel, D.R. Dykaar, G.A. Mourou and T.Y. Hsiang. Picosecond GaAs Based Photoconductive Optoelectronic Detectors. Appl. Phys. Lett. 54 890-892, 1989.

    Google Scholar 

  • Tan, H.H., J.S. Williams and C. Jagadish. Characterization of Deep Levels and Carrier Compensation Created by Proton Irradiation in Undoped GaAs. J. Appl. Phys. 78 1481-1487, 1995.

    Google Scholar 

  • Verghese, S., N. Zamdmer, Q. Hu, E.R. Brown and A. Forster. An Optical Correlator Using a Low-Temperature-Grown GaAs Photoconductor. Appl. Phys. Lett. 69 842-844, 1996.

    Google Scholar 

  • Wang, H.-H., P. Grenier, J.F. Whitaker, H. Fujioka, J. Jasinski and Z. Liliental-Weber. Ultrafast Response of As-Implanted GaAs Photoconductors. IEEE J. Sel. Top. Quantum Electron. 2 630-635, 1996.

    Google Scholar 

  • Warren, A.C., J.M. Woodall, D.T. McInturff, R.T. Hodgson and M.R. Melloch. 1.3-µm P-i-N Photo-detector Using GaAs with Precipitates (GaAs:As). IEEE Electron. Device. Lett. 12 527-529, 1991.

    Google Scholar 

  • Wu, Q., and X.-C. Zhang. Free Space Electro-Optic Sampling of Terahertz Beams. Appl. Phys. Lett. 68 1604-1606, 1996.

    Google Scholar 

  • Zhang X.-C. and D.H. Auston. Optoelectronic Measurement of Semiconductor Surfaces and Interfaces with Femtosecond Optics. J.Appl. Phys. 71 326-338, 1992.

    Google Scholar 

  • Zhang, X.-C., B.-B. Hu, J.T. Darrow and D.H. Auston. Generation of Femtosecond Electromagnetic Pulses from Semiconductor Surfaces. Appl. Phys. Lett. 56 1011-1014, 1990.

    Google Scholar 

  • Zhang, X.-C., Y. Jin, T.D. Hewitt and T.Sangsiri. Magnetic Switching of THz beam. Appl. Phys. Lett. 62 2003-2005, 1993a.

    Google Scholar 

  • Zhang, X.-C., Y. Jin, L.E. Kinsley and M. Weiner. Influence of Electric and Magnetic Field on THz radiation. Appl. Phys. Lett. 62 2477-2479, 1993b.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, GR., Pan, CL. Ultrafast response of multi-energy proton-bombarded GaAs photoconductors. Optical and Quantum Electronics 32, 553–571 (2000). https://doi.org/10.1023/A:1007055918110

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007055918110

Navigation