Skip to main content
Log in

The yeast expression system for recombinant glycosyltransferases

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycosyltransferases are increasingly being used for in vitro synthesis of oligosaccharides. Since these enzymes are difficult to purify from natural sources, expression systems for soluble forms of the recombinant enzymes have been developed. This review focuses on the current state of development of yeast expression systems. Two yeast species have mainly been used, i.e. Saccharomyces cerevisiae and Pichia pastoris. Safety and ease of fermentation are well recognized for S. cerevisiae as a biotechnological expression system; however, even soluble forms of recombinant glycosyltransferases are not secreted. In some cases, hyperglycosylation may occur, P. pastoris, by contrast, secrete soluble orthoglycosylated forms to the supernatant where they can be recovered in a highly purified form.

The review also covers some basic features of yeast fermentation and describes in some detail those glycosyltransferases that have successfully been expressed in yeasts. These include β1,4galactosyltransferase, α2,6sialyltransferase, α2,3sialyltransferase, α1,3fucosyltransferase III and VI and α1,2mannosyltransferase. Current efforts in introducing glycosylation systems of higher eukaryotes into yeasts are briefly addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varki A (1993) Glycobiology 3: 97–130.

    Google Scholar 

  2. Yarema KJ, Bertozzi CR (1998) Current Opinion in Chemical Biology 2: 49–61.

    Google Scholar 

  3. McEver RP (1997) Glycoconj J 14: 585–91.

    Google Scholar 

  4. Hayden FG, Osterhaus AD, Treanor JJ, Fleming DM, Aoki FY, Nicholson KG, Bohnen AM, Hirst HM, Keene O, Wightman K (1997) N Engl J Med 337: 874–80.

    Google Scholar 

  5. Stahl PD, Ezekowitz RAB (1998) Current Opinion in Immunology 10: 50–5.

    Google Scholar 

  6. Bach FH (1998) Annu Rev Med 49: 301–10.

    Google Scholar 

  7. Bowman KG, Hemmerich S, Bhakta S, Singer MS, Bistrup A, Rosen SD, Bertozzi CR (1998) Chem & Biol 5: 447–60.

    Google Scholar 

  8. Cooper DK, Koren E, Oriol R (1994) Immunol Rev 141: 31–58.

    Google Scholar 

  9. Winn R, Vedder N, Ramamoorthy C, Sharar S, Harlan J (1998) Blood Coagul Fibrinolysis 9 Suppl 2: S17–23.

    Google Scholar 

  10. Briggs JB, Oda Y, Gilbert JH, Schaefer ME, Macher BA (1995) Glycobiology 5: 583–88.

    Google Scholar 

  11. Garegg PJ (1997) Adv Carbohydr Chem Biochem 52: 179–205.

    Google Scholar 

  12. Sadler JE, Beyer TA, Oppenheimer CL, Paulson JC, Prieels J-P, Rearick JI, Hill RL (1982) Meth Enzymol 83: 458–514.

    Google Scholar 

  13. Kleene R, Berger EG (1993) Biochim Biophys Acta 1154: pp283–325.

    Google Scholar 

  14. Schachter H (1994) In Molecular Glycobiology (Fukuda M, Hindsgaul O, eds) pp 88–162. Oxford: IRL Press.

    Google Scholar 

  15. Tsuji S (1996) J Biochem 120: 1–13

    Google Scholar 

  16. Tsuji S, Datta AK, Paulson JC (1996) Glycobiology 6: R 5–7.

    Google Scholar 

  17. Breton C, Bettler E, Joziasse DH, Geremia RA, Imberty A (1998) J Biochem 123: 1000–9.

    Google Scholar 

  18. Almeida R, Amado M, David A, Levery SB, Holmes EH, Merkx G, Vankessel AG, Rygaard E, Hassan H, Bennett EP, Clausen H (1997) J Biol Chem 272: 31979–91.

    Google Scholar 

  19. Hennet T, Dinter A, Kuhnert P, Mattu TS, Rudd PM, Berger EG (1998) J Biol Chem 273: 58–65.

    Google Scholar 

  20. Amado M, Almeida R, Carneiro F, Levery SB, Holmes EH, Nomoto M, Hollingsworth MA, Hassan H, Schwientek T, Nielsen PA, Bennett EP, Clausen H (1998) J Biol Chem 273: pp12770–78.

  21. Mollicone R, Candelier JJ, Reguigne I, Couillin P, Fletcher A, Oriol R (1994) Transfus Clin Biol 1: 91–7.

    Google Scholar 

  22. Lowe JB (1997) Kidney International 51: 1418–26.

    Google Scholar 

  23. Taniguchi N, Ihara Y (1995) Glycoconjugate J 12: 733–38.

    Google Scholar 

  24. Bennett EP, Weghuis DO, Merkx G, Vankessel AG, Eiberg H, Clausen H (1998) Glycobiology 8: 547–55.

    Google Scholar 

  25. Clausen H, Bennett EP (1996) Glycobiology 6: 635–46.

    Google Scholar 

  26. Furukawa K, Soejima H, Niikawa N, Shiku H, Furukawa K (1996) J Biol Chem 271: 20836–844.

    Google Scholar 

  27. Burda P, Aebi M (1999) Biochim Biophys Acta 1426: 239–257.

    Google Scholar 

  28. Watt GM, Revers L, Webberley MC, Wilson IB, Flitsch SL (1997) Carbohydr Res 305: 533–41.

    Google Scholar 

  29. Baisch G, Oehrlein R, Ernst B (1996) Bioorg Med Chem Lett 6: pp749–54.

    Google Scholar 

  30. Baisch G, Oehrlein R, Katopodis A, Ernst B (1996) Bioorg Med Chem Lett 6: 759–62.

    Google Scholar 

  31. Scragg AH (1991) In Biochem Biotechnology: Ellis Horwood Series New York NY: Horwood.

    Google Scholar 

  32. Bonnet JA, de Kok HE, Roels JA (1980) Antonie Van Leeuwenhoek 46: 565–76.

    Google Scholar 

  33. Fiechter A, Fuhrmann GF, Käppli O (1981) Adv Microb Physiol 22: 123–83.

    Google Scholar 

  34. Anthony C (1982) The Biochemistry of Methylotrophs. New York: Academic Press, pp 269–95.

    Google Scholar 

  35. Romanos MA (1995) Current Opinion Biotechnol 6: 527–33.

    Google Scholar 

  36. Tottrup HV, Carlsen S (1990) Biotechnol Bioengineering 35: pp339–48.

    Google Scholar 

  37. Talmont F, Sidobre S, Demange P, Milon A, Emorine LJ (1996) FEBSLett 394: 268–72.

    Google Scholar 

  38. Weiss HM, Haase W, Michel H, Reiländer H (1995) FEBS Lett 377: 451–56.

    Google Scholar 

  39. Gallet PF, Vaujour H, Petit JM, Maftah A, Oulmouden A, Oriol R, Lenarvor C, Guilloton M, Julien R (1998) Glycobiology 8: pp919–25.

    Google Scholar 

  40. Siegel RS, Brierley RA (1989) Biotechnol Bioengineering 34: pp403–4.

    Google Scholar 

  41. Digan ME, Lair SV, Brierley RA, Siegel RS, Williams ME, Ellis SB, Kellaris PA, Provow SA, Craig WS, Velicelebi G, Arpold MM, Thill GP (1989) Bio/Technology 7: 160–64.

    Google Scholar 

  42. Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA (1991) Bio/Technology 9: 455–60.

    Google Scholar 

  43. Rose AB, Broach JR (1990) Meth Enzymol 185: 234–79.

    Google Scholar 

  44. Schneider JC, Guarente L (1991) Meth Enzymol 194: 373–88.

    Google Scholar 

  45. Moracci M, La Volpe A, Pulitzer JF, Rossi M, Ciaramella M (1992) J Bacteriol 174: 873–82.

    Google Scholar 

  46. Smith RA, Duncan MJ, Moir DT (1985) Science 229: 1219–24.

    Google Scholar 

  47. Rothstein R (1991) Meth Enzymol 194: 281–301.

    Google Scholar 

  48. Hitzeman RA, Hagie FE, Levine HL, Goeddel DV, Ammerer G, Hall BD (1981) Nature 293: 717–22.

    Google Scholar 

  49. Tuite MF, Dobson MJ, Roberts NA, King RM, Burke DC, Kingsman SM, Kingsman AJ (1982) EMBO J 1: 603–8.

    Google Scholar 

  50. Moir DT, Davidow LS (1991) Meth Enzymol 194: 491–507.

    Google Scholar 

  51. Melnick LM, Turner BG, Puma P, Price-Tillotson B, Salvato KA, Dumais DR, Moir DT, Broeze RJ, Avgerinos GC (1990) J Biol Chem 265: 801–7.

    Google Scholar 

  52. Holland JP, Holland MJ (1980) J Biol Chem 255: 2596–605.

    Google Scholar 

  53. Price VL, Taylor WE, Clevenger W, Worthington M, Young ET (1990) Meth Enzymol 185: 308–18.

    Google Scholar 

  54. Hinnen A, Meyhack B, Heim J (1989) In Yeast Genetic Engineering (Brake PJ, and Valenzuela P, eds) Butterworths, pp 193–213.

  55. Guarente L, Ptashne M (1981) Proc Natl Acad Sci USA 78: 2199–203.

    Google Scholar 

  56. Etcheverry T (1990) Meth Enzymol 185: 319–29.

    Google Scholar 

  57. Sudbery PE, Gleeson MA, Veale RA, Ledeboer AM, Zoetmulder MC (1988) Biochem Soc Trans 16: 1081–83.

    Google Scholar 

  58. Giuseppin MLF, van Eijk HMJ, Bes BCM (1988) Biotechnol Bioengineering 32: 577–83.

    Google Scholar 

  59. St John TP, Davis RW (1981) J Mol Biol 152: 285–315.

    Google Scholar 

  60. Vogel K, Hinnen A (1990) Mol Microbiol 4: 2013–18.

    Google Scholar 

  61. Shuster JR (1989) In Yeast Genetic Engineering (Barr PJ, Brake AJ, Valenzuela P, eds) Butterworths, pp 83–108.

  62. Cousens LS, Shuster JR, Gallegos C, Ku LL, Stempien MM, Urdea MS, Sanchez-Pescador R, Taylor A, Tekamp-Olson P (1987) Gene 61: 265–75.

    Google Scholar 

  63. Renaud JP, Cullin C, Pompon D, Beaune P, Mansuy D (1990) Eur J Biochem 194: 889–96.

    Google Scholar 

  64. Janowicz ZA, Melber K, Merckelbach A, Jacobs E, Hartford N, Comberbach M, Hollenberg CP (1991) Yeast 7: 431–43.

    Google Scholar 

  65. Kaiser CA, Preuss D, Grisafi P, Botstein D (1987) Science 235: 312–17.

    Google Scholar 

  66. Roggenkamp R, Kustermann-Kuhn B, Hollenberg CP (1981) Proc Natl Acad Sci USA 78: 4466–70.

    Google Scholar 

  67. Hitzeman RA, Leung DW, Perry LJ, Kohr WJ, Levine HL, Goeddel DV (1983) Science 219: 620–25.

    Google Scholar 

  68. Wood CR, Boss MA, Kenten JH, Calvert JE, Roberts NA, Emtage JS (1985) Nature 314: 446–49.

    Google Scholar 

  69. Sato T, Uemura H, Izumoto Y, Nakao J, Nakamura Y, Matsubara K (1989) Gene 83: 355–65.

    Google Scholar 

  70. Chang CN, Matteucci M, Perry LJ, Wulf JJ, Chen CY, Hitzeman RA (1986) Mol Cell Biol 6: 812–19.

    Google Scholar 

  71. Singh A, Lugovoy JM, Kohr WJ, Perry LJ (1984) Nucleic Acids Res 12: 8927–38.

    Google Scholar 

  72. Bitter GA, Chen KK, Banks AR, Lai PH (1984) Proc Natl Acad Sci USA 81: 5330–34.

    Google Scholar 

  73. Brake AJ, Merryweather JP, Coit DG, Heberlein UA, Masiarz FR, Mullenbach GT, Urdea MS, Valenzuela P, Barr PJ (1984) Proc Natl Acad Sci USA 81: 4642–46.

    Google Scholar 

  74. Henikoff S, Furlong CE (1983) Nucleic Acids Res 11: 789–800.

    Google Scholar 

  75. Zaret KS, Sherman F (1984) J Mol Biol 177: 107–35.

    Google Scholar 

  76. Romanos MA, Scorer CA, Clare JJ (1992) Yeast 8: 423–88.

    Google Scholar 

  77. Marino MH (1989) BioPharm 2: 18–33.

    Google Scholar 

  78. Makrides SC (1996) Microbiol Rev 60: 512–38.

    Google Scholar 

  79. Eckart MR, Bussineau CM (1996) Curr Opin Biotechnol 7: 525–30.

    Google Scholar 

  80. Meynial-Salles I, Combes D (1996) J Biotechnol 46: 1–14.

    Google Scholar 

  81. Montreuil J, Vliegenthart JFG, Schachter H (1995) Glycoproteins, Vol 29a Amsterdam: Elsevier.

    Google Scholar 

  82. Hagen FK, Van Wuyckhuyse B, Tabak LA (1993) J Biol Chem 268: 18960–65.

    Google Scholar 

  83. Potvin B, Stanley P (1991) Cell Regul 2: 989–1000.

    Google Scholar 

  84. LaMont JT, Gammon MG, Isselbacher KJ (1977) Proc Natl Acad Sci USA 74: 1086–90.

    Google Scholar 

  85. Strous GJ, Berger EG (1982) J Biol Chem 257: 7623–28.

    Google Scholar 

  86. Kukuruzinska MA, Bergh MLE, Jackson BJ (1987) Annu Rev Biochem 56: 915–44.

    Google Scholar 

  87. Datar RV, Cartwright T, Rosen CG (1993) Biotechnology 11: pp349–57.

    Google Scholar 

  88. Datta AK, Paulson JC (1995) J Biol Chem 270: 1497–1500.

    Google Scholar 

  89. Datta AK, Paulson JC (1997) Indian J Biochem Biophys 34: pp157–65.

    Google Scholar 

  90. Mattila P, Joutsjoki V, Kaitera E, Majuri ML, Niittymaki J, Saris N, Maaheimo H, Renkonen O, Renkonen R, Makarow M (1996) Glycobiology 6: 851–59.

    Google Scholar 

  91. Krezdorn CH, Kleene RB, Watzele M, Ivanov SX, Hokke CH, Kamerling JP, Berger EG (1994) Eur J Biochem 220: 809–17.

    Google Scholar 

  92. Borsig L, Ivanov SX, Herrmann GF, Kragl U, Wandrey C, Berger EG (1995) Biochem Biophys Res Commun 210: 14–20.

    Google Scholar 

  93. Malissard M, Berger EG (1998) USGEB98 Lausanne.

  94. Wen DX, Livingston BD, Medzihradszky KF, Kelm S, Burlingame AL, Paulson JC (1992) J Biol Chem 267: 21011–19.

    Google Scholar 

  95. Simonen M, Vihinen H, Jamsa E, Arumae U, Kalkkinen N, Makarow M (1996) Yeast 12: 457–66.

    Google Scholar 

  96. Williams MA, Kitagawa H, Datta AK, Paulson JC, Jamieson JC (1995) Glycoconjugate J 12: 755–61.

    Google Scholar 

  97. Zimmermann R (1998) Biol Chem 379: 275–82.

    Google Scholar 

  98. Van Dorst JALM, Tikkanen JM, Krezdorn CH, Streiff MB, Berger EG, Vankuik JA, Kamerling JP, Vliegenthart JFG (1996) Eur J Biochem 242: 674–81.

    Google Scholar 

  99. Berger EG, Malissard M (1997) In Human Protein Data (Haeberli A, ed) Weinheim: Wiley-VCH Verlag GmbH.

    Google Scholar 

  100. Krezdorn CH, Watzele G, Kleene RB, Ivanov SX, Berger EG (1993) Eur J Biochem 212: 113–20.

    Google Scholar 

  101. Schwientek T, Ernst JF (1994) Gene 145: 299–303.

    Google Scholar 

  102. Schwientek T, Narimatsu H, Ernst JF (1996) J Biol Chem 271: 3398–405.

    Google Scholar 

  103. Malissard M, Borsig L, DiMarco S, Grütter MG, Kragl U, Wandrey C, Berger EG (1996) Eur J Biochem 239: 340–48.

    Google Scholar 

  104. Kleene R, Krezdorn CH, Watzele G, Meyhack B, Herrmann GF, Wandrey C, Berger EG (1994) Biochem Biophys Res Commun 201: 160–67.

    Google Scholar 

  105. Herrmann GF, Krezdorn CH, Malissard M, Kleene R, Paschold H, Weuster-Botz D, Kragl U, Berger EG, Wandrey C (1995) Prot Express Purif 6: 72–8.

    Google Scholar 

  106. Borsig L, Berger EG, Malissard M (1997) Biochem Biophys Res Commun 240: 586–89.

    Google Scholar 

  107. Riederer MA, Hinnen A (1991) J Bacteriol 173: 3539–46.

    Google Scholar 

  108. Aikawa J, Yamashita T, Nishiyama M, Horinouchi S, Beppu T (1990) J Biol Chem 265: 13955–59.

    Google Scholar 

  109. Gill GS, Zaworski PG, Marotti KR, Rehberg EF (1990) Biotechnology 8: 956–58.

    Google Scholar 

  110. Zhu A, Wang ZK, Beavis R (1998) Arch Biochem Biophys 352: 1–8.

    Google Scholar 

  111. Tsujikawa M, Okabayashi K, Morita M, Tanabe T (1996) Yeast 12: 541–53.

    Google Scholar 

  112. Watt GM, Lowden PA, Flitsch SL (1997) Curr Opin Struct Biol 7: 52–60.

    Google Scholar 

  113. Guo Z, Wang PG (1997) Appl Biochem Biotechnol 68: 1–20.

    Google Scholar 

  114. Elling L (1997) Adv Biochem Eng Biotechnol 58: 89–144.

    Google Scholar 

  115. Barker R, Olsen KW, Shaper JH, Hill RL (1972) J Biol Chem 247: 7135–47.

    Google Scholar 

  116. Herrmann GF, Elling L, Krezdorn CH, Kleene R, Berger EG, Wandrey C (1995) Bioorg Med Chem Lett 5: 673–76.

    Google Scholar 

  117. Berger EG, Greber UF, Mosbach K (1986) FEBS Lett 203: 64–8.

    Google Scholar 

  118. Unverzagt C (1997) Carbohydr Res 305: 423–31.

    Google Scholar 

  119. Hokke CH, Zervosen A, Elling L, Joziasse DH, van den Eijnden DH (1996) Glycoconjugate J 13: 687–92.

    Google Scholar 

  120. Scudder PR, Shailubhai K, Duffin KL, Streeter PR, Jacob GS (1994) Glycobiology 4: 929–32.

    Google Scholar 

  121. Oehrlein R, Ernst B, Berger EG (1992) Carbohydr Res 236: 335–38.

    Google Scholar 

  122. Oehrlein R, Hindsgaul O, Palcic MM (1993) Carbohydr Res 244: 149–59.

    Google Scholar 

  123. Witte K, Sears P, Martin R, Wong CH (1997) JAm Chem Soc 119: 2114–18.

    Google Scholar 

  124. Ju JM, Kean EL (1992) Exp Eye Res 55: 589–604.

    Google Scholar 

  125. Schneider R, Hammel M, Berger EG, Ghisalba O, Nuesch J, Gygax D (1990) Glycoconjugate J 7: 589–600.

    Google Scholar 

  126. Cameron HS, Szczepaniak D, Weston BW (1995) J Biol Chem 270: 20112–122.

    Google Scholar 

  127. Mas E, Pasqualini E, Caillol N, Elbattari A, Crotte C, Lombardo D, Sadoulet MO (1998) Glycobiology 8: 605–13.

    Google Scholar 

  128. Murray BW, Takayama S, Schultz J, Wong CH (1996) Biochemistry 35: 11183–95.

    Google Scholar 

  129. Qiao L, Murray BW, Shimazaki M, Schultz J, Wong CH (1996) J Am Chem Soc 118: 7653–62.

    Google Scholar 

  130. Romero PA, Lussier M, Sdicu AM, Bussey H, Herscovics A (1997) Biochem J 321: 289–95.

    Google Scholar 

  131. Roth J (1997) In The Golgi Apparatus (Berger EG, Roth J, eds) pp 131–62. Basel: Birkhäuser.

    Google Scholar 

  132. Chiba Y, Suzuki M, Yoshida S, Yoshida A, Ikenaga H, Takeuchi M, Jigami Y, Ichishima K (1998) J Biol Chem 273: 26298–304.

    Google Scholar 

  133. Roy SK, Yoko-o T, Ikenaga H, Jigami Y (1998) J Biol Chem 273: 83–90.

    Google Scholar 

  134. Paulson JC, Colley KJ (1989) J Biol Chem 264: 17615–18.

    Google Scholar 

  135. Colley KJ, Lee EU, Adler B, Browne JK, Paulson JC (1989) J Biol Chem 264: 17619–22.

    Google Scholar 

  136. Zigova J, Mahle M, Paschold H, Malissard M, Berger EG, Weuster-Botz D (1999) Enzyme and Microbiol Technology, in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric G. Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malissard, M., Zeng, S. & Berger, E.G. The yeast expression system for recombinant glycosyltransferases. Glycoconj J 16, 125–139 (1999). https://doi.org/10.1023/A:1007055525789

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007055525789

Navigation