Skip to main content
Log in

Molecular complexes of copper(I): Easy access to CuF(PPh3)3 · 2ROH (R = Me or Et)

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Treatment of a CuSO4 · 5H2O solution with NH2OH · HCl and NaOH produces orange–yellow Cu2O, which on being reacted with Ph3P and aqueous HF (48%) in MeOH or EtOH yields CuF(PPh3)3 · 2ROH (R = Me or Et) in high yield. The volatile compounds have been characterised by spectroscopic techniques in addition to chemical analyses and solution electrical conductance measurements. Typically, CuF(PPh3)3 · 2MeOH appears to be stable up to 118 °C and loses 2 MeOH and 3 PPh3 between 118 and 274 °C yielding volatile ‘CuF’ at 274 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.G. Spiro (Ed.), Copper Proteins, Wiley International, New York, 1981.

    Google Scholar 

  2. R. Lontie, Copper Proteins and Copper Enzymes, Vol. I & II, CRC Press, Boca Raton, FL, 1984.

    Google Scholar 

  3. K.D. Karlin and J. Zubieta (Ed.), Copper Coordination Chemistry: Biochemical and Inorganic Perspectives, Adenine Press, New York, 1986.

    Google Scholar 

  4. K.D. Karlin and J. Zubieta (Ed.), Biological and Inorganic Copper Chemistry, Adenine Press, New York, 1986.

    Google Scholar 

  5. H. Gampp and A.D. Zuberbuhler, Chimia, 32, 54 (1978).

    Google Scholar 

  6. A.E. Martell, Pure. Appl. Chem., 55, 25 (1983).

    Google Scholar 

  7. T.G. Spiro, Metal Activation of Dioxygen, Wiley Interscience, New York, 1980.

    Google Scholar 

  8. S. Sakaki, G. Kogoa and K. Ohkubo, Inorg. Chem., 25, 2330 (1986).

    Google Scholar 

  9. A. Edel, P.A. Marnst and J.P. Sauvage, Nouv. J. Chem., 8, 495 (1984).

    Google Scholar 

  10. D.R. McMillin, J.R. Kircho. and K.V. Goodwin, Coord. Chem. Rev., 64, 83 (1985).

    Google Scholar 

  11. R.D. Reiki, D.E. Stack and B.T. Dawson, J. Org. Chem., 58, 2483 (1993).

    Google Scholar 

  12. W. Mijs and C. de Jonge, Organic Synthesis by Metal Compounds, Plenum, New York, 8423, 1986.

    Google Scholar 

  13. B.H. Lipshutz and S. Sengupta, Org. React., 41, 135 (1992).

    Google Scholar 

  14. T. Tsuda, T. Hashimoto and T. Saegusa, J. Am. Chem. Soc., 94, 658 (1972).

    Google Scholar 

  15. M.E. Gross, J. Electrochem. Soc., 138, 2422 (1991).

    Google Scholar 

  16. T. Khodas and M. Hampden-Smith, The Chemistry of Metals CVD, VCH, Weinheim, 1994.

    Google Scholar 

  17. P.M. Jeffries, L.H. Dubois and G.S. Girolami, Chem. Mater., 4, 1169 (1992).

    Google Scholar 

  18. D.J. Gulliver, W. Levason and M. Webster, Inorg. Chim. Acta, 52, 153 (1981).

    Google Scholar 

  19. F.H. Jardine, L. Rule and A.G. Vohra, J. Chem. Soc. (A), 238 (1970).

  20. M.K. Chaudhuri, S.K. Chettri, P.C. Paul and P. Srinivas, J. Fluorine Chem., 78, 131 (1996).

    Google Scholar 

  21. B.R. Teo and D.M. Barnes, Inorg. Nucl. Chem. Lett., 12, 681 (1975).

    Google Scholar 

  22. G. Costa, E. Reisenhofer and L. Stefani, J. Inorg. Nucl. Chem., 27, 2581 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhuri, M.K., Dhar, S.S. & Vijayashree, N. Molecular complexes of copper(I): Easy access to CuF(PPh3)3 · 2ROH (R = Me or Et). Transition Metal Chemistry 25, 559–561 (2000). https://doi.org/10.1023/A:1007050908874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007050908874

Keywords

Navigation