Skip to main content

Kinetics and mechanism of the reaction of a quasi-aromatic copper(II) complex, [Cu(PnAO)-6H]0, with formaldehyde


The kinetics of the reaction of CH2O with a quasi-aromatic metal complex (1,1,2,8,9,9-hexamethyl-4,6-dioxa-5-hydro-3,7,10,14-tetraazacyclotetradecane-2,7,10,12-tetraene)copper(II), [Cu(PnAO)-6H]0 (AH), have been studied spectrophotometrically under neutral conditions in 1/3(v/v) MeOH–H2O. The Cu, 2N, 3C quasi-aromatic heterocyclic ring in AH is highly reactive towards CH2O at the central-aromatic-carbon atom, C(12) and the following reaction mechanism is proposed.\({\text{AH + CH}}_{\text{2}} {\text{O}}\xrightarrow{{{\text{k}}_{\text{1}} }}{\text{A}}---{\text{CH}}_{\text{2}} OH\xrightarrow[{ + AH}]{{k_2 }}A---CH_2 ---A\) \({\text{A}}---{\text{CH}}_{\text{2}} ---{\text{A + CH}}_{\text{2}} O2A---CH_2 OH\)The compounds AH, A—CH2OH and A—CH2—A were isolated and identified by i.r spectroscopy and by elemental analysis. The kinetic data supported the proposed reaction sequence. All reactions were second order overall. The rate constants and corresponding activation parameters for every step were obtained and are discussed.

This is a preview of subscription content, access via your institution.


  1. 1.(a)

    B.K. Keppler, A. Diez and V. Seified, Arzneimottelforschung/Drug Res., 35, 1832 (1985); (b) B.K. Keppler, M.R. Derger and M.E. Heim, Cancer Treat Rev., 17, 261 (1990); (c) B.K. Keppler, C. Friesen, H.G. Moritz, H. Vongerichten and E. Vogel, Struct Cond., 78, 97 (1991); (d) B.K. Keppler and D. Schmahl, Arzeimottelforschung/Drug Res., 36, 1822 (1986); (e) H. Bischo., M.R. Berger, B.K. Keppler and D. Schmahl, J. Cancer Res. Clin Oncol., 113, 446 (1987); (f) B.K. Keppler and M.E. Heim, Drugs Future, 13, 637 (1988).

    Google Scholar 

  2. 2.(a)

    W.R. Cullen and E.B. Wickenheiser, J. Organometal. Chem., 370, 141 (1989); (b) P.J. McCarthy and A.E. Martell, Inorg. Chem., 6, 781 (1967); (c) S. Sasaki, Y. Itagaki, Kurokawa, K. Nakanishi and A. Kasahara, Bull. Chem. Soc. Jpn., 40, 76 (1967); (d) J. Lewis, R.F. Long and C. Oldman, J. Chem. Soc., 6740 (1965).

    Google Scholar 

  3. 3.(a)

    B.N. Hansen, B.M. Hybertson, R.M. Barkley and R.E. Sievers, Chem. Mater., 4, 749 (1992); (b) R. M'Hamdi, J.F. Bocquet, K. Chhor and C. Pommier, J. Supercrit. Fluids, 4, 55 (1991).

    Google Scholar 

  4. 4.(a)

    R.W. Moshier, R.E. Sievers and L.B. Spendlove, US Patent, 3, 356-527 (1967); (b) T.J. Wenzel, E.J. Williams, R.C. Haltiwanger and R.E. Sievers, Polyhedron, 4, 369 (1985); (c) H.K. Shin, M.J. Hampden-Smith, T.T. Kodas and A.L. Rheingold, J. Chem. Soc., Chem. Comun., 217 (1992).

    Google Scholar 

  5. 5.(a)

    B.B. Antony, R.C. John, C. Stiphen and G.N. Peter, J. Chem. Soc., Dalton Trans., 1159 (1991); (b) D.W. Bruce, J. Chem. Soc., Dalton Trans., 2983 (1993); (c) P. Espinet, M.A. Esternelas, L.A. Ore, Coord. Chem. Rev., 17, 215 (1992); (d) M.J. Baena, J. Barbera, P. Espinet, A. Ezcurra, A.W. Kitzerow and G. Heppke, J. Am. Chem. Soc., 116, 1899 (1994); (e) M.J. Baena, J. Buey, P. Espinet, A. Ezcurra, A.W. Kitzerow and G. Heppke, Angew. Chem. Int. Edn. Engl., 32, 1201 (1993); (f) M.M.A. Manfredi, F. Yogezzoli, M. Ghedini and S. Licoccia, Inorg. Chim. Acta, 86, 165 (1984).

  6. 6.

    P. Andrekzyk and R.L. Lintvedt, J. Am. Chem. Soc., 94, 8363 (1974).

    Google Scholar 

  7. 7.(a)

    D.P. Fisher, V. Piermattie and J.C. Dabrowiak, J. Am. Chem. Soc., 99, 2811 (1977); (b) Y. Wakatsuki, H. Yamazaki, P.A. Grutsch, M. Santhanam and C. Kutal, J. Am. Chem. Soc., 107, 8153 (1987); (c) C.A. Craig and R.J. Watts, Inorg. Chem., 28, 309 (1989); (d) R. Schwartz, G. Gliemann, P. Jolliet and A. von Zalevsky, Inorg. Chem., 28, 742 (1989).

    Google Scholar 

  8. 8.(a)

    R.E. Rondean and R.E. Sievers, J. Am. Chem. Soc., 99, 1522 (1977); (b) R.E. Sievers, `Nuclear Shift Reagents', Academic Press, New York, 1973.

    Google Scholar 

  9. 9.(a)

    R.J. Hartle, US Patent, 4,036,605 (1977); (b) K.J. Eisentraut, R.L. Tischer and R.E. Sievers, US Patent, 3,794,473 (1974); (c) R.E. Sievers and J.E. Sadlowski, Science, 201, 217 (1978); (d) T.J. Wenzel, E.J. Williams, C. Haltiwanger and R.E. Sievers, Polyhedron, 4, 369 (1985).

  10. 10.(a)

    A.F. Ghiron, R.K. Murmann and E.O. Schlemper, Inorg. Chem., 24, 3271 (1985); (b) B. Song, Q.-Y. Zhang, Y.-T. Chen and R.K. Murmann, Inorg. Chem., 31, 2314 (1992); (c) B. Song, Q.-Y. Zhang, Y.-T. Chen and R.K. Murmann, J. Indian Chem. Soc., 69, 420 (1992); (d) Y.-M. Zhang, H.-K. Lin, Y.-T. Chen and R.K. Murmann, Polyhedron, 14, 1083 (1995); (e) S. Aygen, E.F. Paulus, Y. Kitamura and R. von Eldik, Inorg. Chem., 26, 769 (1987); (f) K. Kitamura, J.G. Leipoldt and A. Roodt, Inorg. Chim. Acta, 149, 125 (1988).

    Google Scholar 

  11. 11.

    E.G. Vassian and R.K. Murmann, Coord. Chem. Rev., 105, 1 (1990).

    Google Scholar 

  12. 12.

    E.G. Vassian and R.K. Murmann, Inorg. Chem., 6, 2403 (1967).

    Google Scholar 

  13. 13.

    Z.-X. Chang, Practical Organic Analysis, Shanghai Publishing House: Shanghai, PRC, 1965, p. 2155.

    Google Scholar 

  14. 14.

    R. Hartley, J. Chem. Soc., 127, 524 (1925).

    Google Scholar 

  15. 15.

    F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry, Part A, Plenum press, New York, 1977, p. 264.

    Google Scholar 

  16. 16.

    J.P. Guthie, Can. J. Chem., 53, 898 (1975).

    Google Scholar 

  17. 17.

    Y.-B. Yao, T. Xie and Y.-M. Gao, Handbook of Physico-chemistry, Shanghai Science and Technology Publishing House: Shanghai, PRC, 1985, p. 118.

    Google Scholar 

  18. 18.

    Y.-M Zhang, Dissertation, Nankai University, 1993.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, ZM., Lin, HK., Zhou, ZF. et al. Kinetics and mechanism of the reaction of a quasi-aromatic copper(II) complex, [Cu(PnAO)-6H]0, with formaldehyde. Transition Metal Chemistry 25, 562–567 (2000).

Download citation


  • Copper
  • Spectroscopy
  • Physical Chemistry
  • Formaldehyde
  • Inorganic Chemistry