Journal of Protein Chemistry

, Volume 19, Issue 2, pp 75–84 | Cite as

Some Molecular and Enzymatic Properties of a Homogeneous Preparation of Thiaminase I Purified from Carp Liver

  • Małgorzata Boś
  • Andrzej Kozik


A homogeneous preparation of thiaminase I (thiamine:base 2-methyl-4-aminopyrimidine-5-methenyl transferase, EC was obtained from carp liver, for the first time from a nonbacterial source. Its molecular mass was 55 kDa by gel filtration and by SDS—PAGE regardless the presence of the reducing agent, indicating that the native enzyme consists of a single polypeptide chain. The determined sequence of 20 residues at the N-terminal of carp thiaminase I seemed to be unique. The enzyme was tested for ability to decompose a number of thiamine analogues. Even very extensive modifications of the thiazolium fragment were well tolerated, but around the pyrimidine fragment the active center seemed to exert steric restrictions against 1′ (N)- and 2′ (C)- atoms, while the 4′-amino group and untouched 6′-carbon atom were absolutely essential for the enzyme action. Numerous nucleophiles could be used by the enzyme as cosubstrates, aniline, pyridine, and 2-mercaptoethanol being the best among compounds tested. Protein chemical modification experiments indicated that histidine residues, carboxyl groups, and sulfhydryl groups may play specific roles in the thiaminase I-catalyzed reaction. Like in the bacterial enzyme, a sulfhydryl group may be a catalytically critical active-site nucleophile. The histidine residues and carboxyl groups may be essential for thiamine binding to the active site.

Thiaminase I thiamine analogues chemical modification sulfhydryl groups carp liver 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, M., Ito, S., Kimoto, M., Hayashi, R., and Nishimune, T. (1987). Biochim. Biophys. Acta 909, 213–221.Google Scholar
  2. Andersag, H., and Westphal, K. (1937). Berichte 70, 2035–2166.Google Scholar
  3. Anderson, T. T., and Ebner, K. E. (1979). J. Biol. Chem. 254, 10995–10999.Google Scholar
  4. Birkett, D. J., Dwek, R. A., Radda, G. K., Richards, R. E., and Salmon, A. G. (1971). Eur. J. Biochem. 20, 494–508.Google Scholar
  5. Bonvicino, G. E., and Hennessy, D. J. (1957). J. Am. Chem. Soc. 79, 6325–6328.Google Scholar
  6. Campobasso, N., Begun, J., Costello, C. A., Begley, T. P., and Ealick, S. E. (1998a). Acta Cryst. D 54, 448–450.Google Scholar
  7. Campobasso, N., Costello, C. A., Kinsland, C., Begley, T. P., and Ealick, S. E. (1998b). Biochemistry 37, 15981–15989.Google Scholar
  8. Carraway, K. L., and Koshland, D. E., Jr. (1972). Meth. Enzymol. 25, 616–623.Google Scholar
  9. Chiu, H.-J., Reddick, J. J., Begley, T. P., and Ealick, S. E. (1999). Biochemistry 38, 6460–6470.Google Scholar
  10. Cohen, S. A., Meys, M., and Tarvin, T. L. (1989). The Pico-Tag Methods, Millipore Corporation, Bedford, Massachusetts.Google Scholar
  11. Costello, C. A., Kellehert, N. L., Abe, M., McLafferty, F. W., and Begley, T. P. (1996). J. Biol. Chem. 271, 3445–3452.Google Scholar
  12. Dominici, P., Tancini, B., and Voltattorini, C. B. (1985). J. Biol. Chem. 260, 10583–10589.Google Scholar
  13. Dyda, F., Furey, W., Swaminathau, S., Sax, M., Farrenkopf, B., and Jordan, F. (1993). Biochemistry 32, 6165–6170.Google Scholar
  14. Ellefson, W. E. (1985). In Methods of Vitamin Assay, 4th ed. (Augustin, J., Klein, B. P., Becker, D. A., and Venugopal, P. B., eds.), Wiley-Interscience, New York, pp. 349–363.Google Scholar
  15. Evans, W. C. (1975). Vitam. Horm. 33, 467–504.Google Scholar
  16. Fujita, A. (1954). Adv. Enzymol. 15, 389–421.Google Scholar
  17. Fujita, A. (1955). Meth. Enzymol. 2, 622–628.Google Scholar
  18. Fujita, A., Nose, Y., Kozuka, S., Tashiro, T., Ueda, K., and Sakamoto, S. (1952). J. Biol. Chem. 196, 289–295.Google Scholar
  19. Glazer, A. N., DeLange R. J., and Sigman, D. S. (1975). Chemical Modification of Proteins. Selected Methods and Analytical Procedures, North-Holland, Amsterdam, pp. 69–84.Google Scholar
  20. Grassetti, D. R., and Murray, J. F. (1967). Arch. Biochem. Biophys. 119, 41–48.Google Scholar
  21. Hirs, C. H. W. (1967). Meth. Enzymol. 11, 199–203.Google Scholar
  22. Hutter, J. A., and Slama, J. T. (1987). Biochemistry 26, 1969–1973.Google Scholar
  23. Jayamani, M., and Low, P. S. (1992). Bioorg. Med. Chem. Lett. 2, 1007–1012.Google Scholar
  24. Kelleher, N. L., Nicewonger, R. B., Begley, T. P., and McLafferty, F. W. (1997). J. Biol. Chem. 272, 32215–32220.Google Scholar
  25. Kozik, A., and Rapala-Kozik, M. (1993). J. Chromatogr. 648, 823–831.Google Scholar
  26. Lienhard, G. E. (1970). Biochemistry 9, 3011–3020.Google Scholar
  27. Lindqvist, Y., and Schneider, G. (1993). Curr. Opin. Struct. Biol. 3, 896–901.Google Scholar
  28. Lindqvist, Y., Schneider, G., Elmler, U., and Sundstroem, M. (1992). EMBO J. 11, 2373–2379.Google Scholar
  29. Lowry, O. M., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). J. Biol. Chem. 193, 265–275.Google Scholar
  30. Matsudaira, P. (1987). J. Biol. Chem. 262, 10035–10038.Google Scholar
  31. Mazrimas, J. A., Song, P.-S., Ingraham, L. L., and Draper, R. D. (1963). Arch. Biochem. Biophys. 100, 409–413.Google Scholar
  32. McCleary, B. V., and Chick, B. F. (1977). Phytochemistry 16, 207–213.Google Scholar
  33. Means, G. E., and Feeney, R. E. (1971). Chemical Modification of Proteins, Holden-Day, San Francisco, p. 218.Google Scholar
  34. Melchior, W. B., and Fahrney, D. (1970). Biochemistry 8, 251–258.Google Scholar
  35. Mitsukawa, T., Hirano, H., and Yurugi, S. (1970). Meth. Enzymol. 18A, 141–162.Google Scholar
  36. Murata, K. (1982). Ann. N. Y. Acad. Sci. 378, 146–156.Google Scholar
  37. Nicewonger, R., Rammelsberg, A., Costello, C. A., and Begley, T. P. (1995). Bioorg. Chem. 23, 512–518.Google Scholar
  38. Nikkola, M,, Lindqvist, Y., Kluger, R., and Schneider, G. (1994). J. Mol. Biol. 238, 387–404.Google Scholar
  39. Nishimura, H., Nosaka, K., Sempuku, K., and Iwashima, A. (1981). Biochim. Biophys. Acta 668, 333–338.Google Scholar
  40. Pathy, L., and Smith, E. L. (1975). J. Biol. Chem. 250, 557–564.Google Scholar
  41. Puzach, S. S., Gorbach, Z. V., and Ostrovski, Y. M. (1984). Biokhimija 49, 1178–1183.Google Scholar
  42. Rapalá-Kozik, M., and Kozik, A. (1996). Biochimie 78, 77–84.Google Scholar
  43. Riordan, J. F., and Valee, B. L. (1972). Meth. Enzymol. 25, 500–508.Google Scholar
  44. Schägger, H., and von Jagow, G. (1987). Anal. Biochem. 166, 368–379.Google Scholar
  45. Sykes, P., and Todd, A. R. (1951). J. Am. Chem. Soc. 1951, 534–544.Google Scholar
  46. Tomlinson, R. V., Torrence, P. F., and Tieckelmann, H. (1970). Meth. Enzymol. 18A, 182–194.Google Scholar
  47. Wells, M. A. (1973). Biochemistry 12, 1086–1093.Google Scholar
  48. Wittliff, J. L., and Airth, R. L. (1970a). Meth. Enzymol. 18A, 229–234.Google Scholar
  49. Wittliff, J. L., and Airth, R. L. (1970b). Meth. Enzymol. 18A, 234–238.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Małgorzata Boś
    • 1
  • Andrzej Kozik
    • 1
  1. 1.Department of Biochemistry, The Jan Zurzycki Institute of Molecular BiologyJagiellonian UniversityKrakówPoland

Personalised recommendations