Skip to main content
Log in

Modelling of guided-wave Bragg gratings and grating sensors using the collocation method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We have used the collocation method to model the characteristics of guided-wave Bragg gratings. The collocation method being a total field method, takes into account all modes, guided as well as radiation. We have first studied the effect of the grating structural parameters such as the grating profile and the duty cycle of periodic variation and have shown that these can have significant effect on the Bragg wavelength and the reflection spectrum. We have then obtained the response characteristics of gratings for their use in strain, temperature and pressure sensing. Our results compare very well with available experimental results. Comparisons with the coupled mode theory have also been included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D.Z., V. Mizrahi, T. Erdogan and A.E. White. Electron. Lett. 29 566, 1993.

    Google Scholar 

  • Banerjee, S. and A. Sharma. J. Opt. Soc. Am. A 6 1884, 1989; Errata: 7 2156, 1990.

    Google Scholar 

  • Bellman, R. Introduction to Matrix Analysis, McGraw Hill, New York, 1960.

    Google Scholar 

  • Erdogan, T. J. Lightwave Technol. 15 1277, 1997.

    Google Scholar 

  • Frogatt, M. and J. Moore. Appl. Opt. 37 1741, 1998.

    Google Scholar 

  • Giles, C.R. J. Lightwave Technol. 15 1391, 1997.

    Google Scholar 

  • Gray, D.E., Ed., A.I.P. Handbook, McGraw Hill, New York, 1972.

    Google Scholar 

  • Hill, K.O. and G. Meltz. J. Lightwave Technol. 15 1263, 1997.

    Google Scholar 

  • Kersey, A.D., M.A. Davis, H.J. Patrick, M. Leblanc, K.P. Koo, C.G. Askins, M.A. Putnam and E.J. Friebele. J. Lightwave Technol. 15 1442, 1997.

    Google Scholar 

  • Kutsaenko, V., W. Johnstone, E. Lavretskii and J. Rice. IEEE Photon. Technol. Lett. 6 1344, 1994.

    Google Scholar 

  • McGarrity, C. and D.A. Jackson. J. Lightwave Technol. 16 54, 1998.

    Google Scholar 

  • Melle, S.M., K. Liu and R.M. Measures. Appl. Opt. 32 3601, 1993.

    Google Scholar 

  • Sharma, A. In Progress in Electromagnetic Research, ed. W.P. Huang, Vol. 11, p 143. EMW Publishing, Cambridge, Mass. (USA), 1995.

    Google Scholar 

  • Sharma, A. and S. Banerjee. Opt. Lett. 14 94, 1989.

    Google Scholar 

  • Sharma, A. and S. Deb. Proc. SPIE 2212 298, 1994.

    Google Scholar 

  • Sharma, A., J. Kompella and P.K. Mishra. J. Lightwave Technol. 8 143, 1990.

    Google Scholar 

  • Tseng, S.M. and C.-L. Chen. Appl. Opt. 31 3438, 1992.

    Google Scholar 

  • Waxler, R.M. and G.W. Cleek. J. Res. Natl. Bureau Stand. A 77A 755, 1973.

    Google Scholar 

  • Xu, M.G., L. Reekie, Y.T. Chow and J.P. Dakin. Electron. Lett. 29 398, 1993.

    Google Scholar 

  • Yariv, A. IEEE J. Quantum Electron. QE-9 919, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taneja, A.K., Sharma, A. Modelling of guided-wave Bragg gratings and grating sensors using the collocation method. Optical and Quantum Electronics 32, 1033–1046 (2000). https://doi.org/10.1023/A:1007007705416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007007705416

Navigation