Skip to main content
Log in

Coupled mode theory for resonant excitation of waveguiding structures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Resonant coupling of light beams via high-index media or gratings to planar waveguiding structures are of interest for both applications and from a theoretical point of view. Coupled Mode theory (CMT) can give an accurate description of the coupling process in terms of relatively simple expressions involving often a large number of coupling parameters. In this paper it is shown, using time reversal and energy conservation how these parameters are interrelated. The evaluation of the remaining independent parameters is shown to be possible using a few reflection and transmission coefficients for incoming plane waves, including in the calculations, if present, the effect of the grating. Further, it is proved that under certain condition a grating coupler may show exactly 100% reflection. Analytical expressions for the reflected and transmitted beams and the amplitude distribution of the excited mode are given for the case of incoming Gaussian beams. A few applications of the theory and considerations on its applicability are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and I.A. Stegun (eds). Handbook of Mathematical Functions, Natl. Bur. Stds., Dover Publications Inc., New York, USA, 1970.

    Google Scholar 

  • Avrutsky, I.A. and V.A. Sychugov. J. Modern Opt. 36 1527, 1989.

    Google Scholar 

  • Bertoni, H.L., L.H.S. Cheo and T. Tamir. IEEE Trans. Antennas Propagat. 37 78, 1989.

    Google Scholar 

  • Chandezon, J., M.T. Dupuis, G. Cornet and D. Maystre. J. Opt. Soc. Am. 72 839, 1982.

    Google Scholar 

  • Ctyroky, J.C., S. Helfert and R. Pregla. Opt. Quant. Electron. 30 343, 1998.

    Google Scholar 

  • Haus, H.A. Waves and fields in optoelectronics. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1982.

    Google Scholar 

  • Hessel, A. and A.A. Oliner. Appl. Opt. 4 1275, 1965.

    Google Scholar 

  • Hoekstra, H.J.W.M., J.C. van't Spijker and H.M.M. Klein Koerkamp. J. Opt. Soc. Am. A 10 2226, 1993.

    Google Scholar 

  • Matlab, software tool distributed by The MathWorks, Inc.

  • Peng, S.T., T. Tamir and H.L. Bertoni. IEEE Trans. Microwave Theory Tech 23 123, 1975.

    Google Scholar 

  • Rosenblatt, D., A. Sharon and A.A. Friesem. IEEE J. Quant. Electron. 33 2038, 1997.

    Google Scholar 

  • Smith, R.E., S.N. Houde-Walter and G.W. Forbes. IEEE J. Quant. Electron. 28 1520, 1992.

    Google Scholar 

  • Sychugov, V.A. and A.V. Tishchenko. Photon. Optoelectron. 1 79, 1993.

    Google Scholar 

  • Syms, R.R.A. and J.R. Cozen. Optical guided waves and devices. McGraw-Hill Book Company, London, 1992.

    Google Scholar 

  • Tamir, T. and S. Zhang. In Guided-Wave Optoelectronics, eds. T. Tamir et al. Plenum Press, New York, 1995.

    Google Scholar 

  • Ulrich, R. J. Opt. Soc. Am. 60 1337, 1970.

    Google Scholar 

  • Wood, R.W. Phil. Mag. 4 396, 1902.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoekstra, H.J. Coupled mode theory for resonant excitation of waveguiding structures. Optical and Quantum Electronics 32, 735–758 (2000). https://doi.org/10.1023/A:1007006226372

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007006226372

Navigation