Skip to main content
Log in

Temporal and Spatial Expression of Hoxa-2 During Murine Palatogenesis

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Mice homozygous for a targeted mutation of the Hoxa-2 gene are born with a bilateral cleft of the secondary palate associated with multiple head and cranial anomalies and these animals die within 24 hr of birth (Gendron-Maguire et al., 1993; Rijli et al., 1993; Mallo and Gridley, 1996). We have determined the spatial and temporal expression of the Hoxa-2 homeobox protein in the developing mouse palate at embryonic stages E12, E13, E13.5, E14, E14.5, and E15.

2. Hoxa-2 is expressed in the mesenchyme and epithelial cells of the palate at E12, but is progressively restricted to the tips of the growing palatal shelves at E13.

3. By the E13.5 stage of development, Hoxa-2 protein was found to be expressed throughout the palatal shelf. These observations correlate with palatal shelf orientation and Hoxa-2 protein may play a direct or indirect role in guiding the palatal shelves vertically along side the tongue, starting with the tips of the palatal shelves at E13, followed by the entire palatal shelf at E13.5.

4. As development progresses to E14, the stage at which shelf elevation occurs, Hoxa-2 protein is downregulated in the palatal mesenchyme but remains in the medial edge epithelium. Expression of Hoxa-2 continues in the medial edge epithelium until the fusion of opposing palatal shelves.

5. By the E15 stage of development, Hoxa-2 is downregulated in the palate and expression is localized in the nasal and oral epithelia.

6. In an animal model of phenytoin-induced cleft palate, we report that Hoxa-2 mRNA and protein expression were significantly decreased, implicating a possible functional role of the Hoxa-2 gene in the development of phenytoin-induced cleft palate.

7. A recent report by Barrow and Capecchi (1999), has illustrated the importance of tongue posture during palatal shelf closure in Hoxa-2 mutant mice. This along with our new findings of the expression of the Hoxa-2 protein during palatogenesis has shed some light on the putative role of this gene in palate development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Barrow, J. R., and Capecchi, M. R. (1999). Compensatory defects associated with mutations in Hoxa1 restore normal palatogenesis to Hoxa2 mutants. Development 126:5011-5026.

    Google Scholar 

  • Biale, Y., Lewenthal, H., and Ben Aderet, N. (1975). Congenital malformations due to anticonvulsive drugs. Obst et. Gynecol. 45:439-442.

    Google Scholar 

  • Brinkley, L. L. (1984). Changes in cell distribution during mouse secondary palate closure in vivo and in vitro. I. Epithelial cells. Dev. Biol. 102:216-277.

    Google Scholar 

  • Brinkley, L. L., and Bookstein, F. L. (1986). Cell distribution during mouse secondary palate closure. II. Mesenchymal cells. J. Embryol. Exp. Morphol. 96:111-130.

    Google Scholar 

  • Brinkley, L. L., and Morris-Wiman, J. (1987). Computer assisted analysis of hyaluronate distribution during morphogenesis of the mouse secondary palate. Development 100:629-635.

    Google Scholar 

  • Brunet, C. L., Sharpe, P. M., and Ferguson, M. W. J. (1995). Inhibition of TGF-β3 (but not TGF-β1 or TGF-β2) activity prevents normal mouse embryonic palate fusion. Int. J. Dev. Biol. 39:345-335.

    Google Scholar 

  • Bulleit, R. F., and Zimmerman, E. F. (1985). The influence of the epithelium on palate shelf reorientation. J. Embryol. Exp. Morphol. 88:265-279.

    Google Scholar 

  • Chai, Y., Sasano, Y., Bringas, P., Jr., Mayo, M., Kaartinen, V., Heisterkamp, N., Groffen, J., Slavkin, H., and Shuler, C. (1997). Characterization of the fate of midline epithelial cells during the fusion of mandibular prominences in vivo. Dev. Dyn. 208:526-535.

    Google Scholar 

  • Chisaka, O., and Capecchi, M. R. (1991). Regionally restricted develomental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5 Nature 350:473-479.

    Google Scholar 

  • Condie, B. G., and Capecchi, M. R. (1994). Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions. Nature 370:304-307.

    Google Scholar 

  • Corsetti, M. T., Levi, G., Lancia, F., Sanseverino, L., Ferrini, S., Boncinelli, E., and Corte, G. (1995). Nucleolar localisation of three Hox homeoproteins. J. Cell Sci. 108:187-193.

    Google Scholar 

  • Davenne, M., Maconochie, M. K., Neun, R., Pattyn, A., Chambon, P., Krumlauf, R., and Rijli, F. M. (1999). Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain. Neuron 22:677-691.

    Google Scholar 

  • Dixon, M. J. Garner, J., and Ferguson, M. W. (1991). Immunolocalization of epidermal growth factor (EGF), EGF receptor and transforming growth factor alpha (TGF-alpha) during murine palatogenesis in vivo and in vitro. Anat. Embryol. (Berl). 184:83-91.

    Google Scholar 

  • Ferguson, M. W. J. (1987). Palate development: Mechanisms and malformations (Conway Review Lecture). Irish J. Med. Sci. 156:309-315.

    Google Scholar 

  • Ferguson, M. W. J. (1988). Palate development. Development 103 (Suppl):41-60.

    Google Scholar 

  • Fienberg, A. A., Utset, M. F., Bogarad, L. D., Hart, C. P., Awgulewitsch, A., Ferguson-Smith, A., Fainsod, A., Rabin, M., and Ruddle, F. H. (1987). Homeobox genes in murine development. Curr. Topics Dev. Biol. 23:233-256.

    Google Scholar 

  • Finnell, R. H. (1981). Phenytoin-induced teratogenesis: A mouse model. Science 211:483-484.

    Google Scholar 

  • Fitzpatrick D. R., Denhez F., Kondaiah, P., and Akhurst, R. J. (1990). Differential expression of TGF beta isoforms in murine palatogenesis. Development 109:585-595.

    Google Scholar 

  • Foreman, D. M., Sharpe, P. M., and Ferguson, M. W. J. (1991). Comparative biochemistry of mouse and chick secondary-palate development in vivo and in vitro with particlular emphasis on extracellular matrix molecules and the effects of growth factors on their synthesis. Arch. Oral Biol. 36:457-471.

    Google Scholar 

  • Gall, J. G., and Pardue, M. L. (1971). Nucleic acid hybridization in cytological preparations.Methods. Enzymol. 21:470-480.

    Google Scholar 

  • Gavalas, A., Davenne, M., Lumsden, A., Chambon, P., and Rijli, F. (1997). Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. Development 124:3693-3702.

    Google Scholar 

  • Gehring, W. J. (1987). Homeoboxes in the study of development. Science 236:1245-1252.

    Google Scholar 

  • Gehring, W. J., Muller, M., Affolter, M., Percival-Smith, A., Billeter, M., Qian, Y. Q., Otting, G., and Wuthrich, K. (1990). The structure of the homeodomain and its functional implications. Trends Genet. 6:323-329.

    Google Scholar 

  • Gellon, G., and McGinnis, W. (1998). Shaping animal body plans in development and evolution by modulation of Hox expression patterns. BioEssays 20:116-125.

    Google Scholar 

  • Gendron-Maguire, M., Mallo, M., Zhang, M., and Gridley, T. (1993). Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75:1317-1331.

    Google Scholar 

  • Goldman, A. S., Baker, M. K., Piddington, R., and Herold, R. (1983). Inhibition of programmed cell death in mouse embryonic palate in vitro by cortisol and phenytoin: Receptor involvement and requirement of protein synthesis. Proc. Soc. Exp. Biol. Med. 174:239-243.

    Google Scholar 

  • Graba, Y., Aragnol, D., and Pradel, J. (1997). Drosophila Hox complex downstream targets and the function of homeotic genes. BioEssays 19:379-388.

    Google Scholar 

  • Greene, R. M., and Pratt, R. M. (1976). Developmental aspects of secondary palate formation. J. Embryol. Exp. Morphol. 36:225-245.

    Google Scholar 

  • Hansen, D. K. (1991). The embryotoxicity of phenytoin: An update on possible mechanisms. Proc. Soc. Exp. Biol. Med. 197:361-368.

    Google Scholar 

  • Hao, Z., Yeung, J., Wolf, L., Doucette, R., and Nazarali, A. (1999). Differential expression of Hoxa-2 protein along the dorsal-ventral axis of the developing and adult mouse spinal cord. Dev. Dyn. 216:201-217.

    Google Scholar 

  • Holland, P. W. H., and Hogan, B. L. M. (1988). Spatially restricted patterns of expression of the homeobox-containing gene Hox 2.1 during mouse embryogenesis. Development 102:159-174.

    Google Scholar 

  • Jungbluth, S., Bell, E., and Lumsden, A. (1999). Specification of distinct motor neuron identities by the singular activities of Hox genes. Development 126:2751-2758.

    Google Scholar 

  • Kanzler, B., Kuschert, S. J., Liu, Y. H., and Mallo, M. (1998). Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development 125:2587-2597.

    Google Scholar 

  • Kaufman, M. H. (1992). The Atlas of Mouse Development, Academic Press, New York, pp. 1-512.

    Google Scholar 

  • Kessel, M., and Gruss, P. (1990). Murine developmental control genes. Science 249:374-379.

    Google Scholar 

  • Kissinger, C. R., Liu, B. S., Martin-Blanco, E., Kornberg, T. B., and Pabo, C. O. (1990). Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: A framework for understanding homeodomain-DNA interactions. Cell 63:579-590.

    Google Scholar 

  • Krumlauf, R. (1993). Mouse Hox genetic functions. Curr. Opin. Genet. Dev. 3:621-625.

    Google Scholar 

  • Levine, M., and Hoey, T. (1988). Homeobox proteins as sequence-specific transcription factors. Cell 55:537-540.

    Google Scholar 

  • Li, S., Crenshaw, E. B., III, Rawson, E. J., Simmons, D. M., Swanson, L. W., and Rosenfeld, M. G. (1990). Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347:528-533.

    Google Scholar 

  • Lum, J. T., and Wells, P. G. (1986). Pharmacological studies on the potentiation of phenytoin teratogenicity by acetaminophen. Teratology 33:53-72.

    Google Scholar 

  • Maconochie, M., Krishnamurthy, R., Nonchev, S., Meier, P., Manzanares, M., Mitchell, P. J., Krumlauf, R. (1999). Regulation of Hoxa2 in cranial neural crest cells involves members of the AP-2 family. Development 126:1483-1494.

    Google Scholar 

  • Mallo, M., and Brandlin, I. (1997). Segmental identity can change independently in the hindbrain and rhomboencephalic neural crest. Dev. Dyn. 210:146-156.

    Google Scholar 

  • Mallo, M., and Gridley, T. (1996). Development of the mammalian ear: Coordinate regulation of formation of the tympanic ring and the external acoustic meatus. Development 122:173-179.

    Google Scholar 

  • Manak, J. R., and Scott, M. P. (1994) A class act: Conservation of homeodomain protein functions. Development (Suppl.): 61-71.

  • Mark, M., Rijli, F. M., and Chambon, P. (1997). Homeobox genes in embryogenesis and pathogenesis. Pediatr. Res. 42:421-429.

    Google Scholar 

  • McGinnis, W., and Krumlauf, R. (1992). Homeobox genes and axial patterning Cell 68:283-302.

    Google Scholar 

  • Melnick, M., and Shields, E. D. (1982). Cleft lip and cleft palate. In Melnick, M., Shields, E. D., Burzynski, N. J. (eds.), Clinical Dysmorphology of Oral-Facial Structures, John Wright-PSG, Boston, pp. 360-372.

    Google Scholar 

  • Melnick, M., Chen, H., Buckley, S., Warburton, D., and Jaskoll, T (1998). Insulin-like growth factor II receptor, transforming growth factor-β, and Cdk4 expression and the developmental epigenetics of mouse palate morphogenesis and dysmorphogenesis. Dev. Dyn. 211:11-25.

    Google Scholar 

  • Mino, Y., Mizusawa, H., and Shiota, K. (1994). Effects of anticonvulsant drugs on fetal mouse palates cultured in vitro. Reprod. Toxicol. 8:225-230.

    Google Scholar 

  • Morgan, P. R., and Pratt, R. M. (1977). Ultrastructure of the expected fusion zone in rat fetuses with diazo-oxo-norleucine (D.O.N)-induced cleft palate. Teratology 15:281-289.

    Google Scholar 

  • Musselman, A. C., Bennett, G. D., Greer, K. A., Eberwine, J. H., and Finnell, R. H. (1994). Preliminary evidence of phenytoin-induced alterations in embryonic gene expression in a mouse model. Reprod. Toxicol. 8:383-395.

    Google Scholar 

  • Nazarali, A., Kim Y., and Nirenberg, M. (1992). Hox-1.11 and Hox-4.9 homeobox genes. Proc. Natl. Acad. Sci. USA 89:2883-2887.

    Google Scholar 

  • Nonchev, S., Vesque, C., Maconochie, M., Seitanidou, T., Ariza-McNaughton, L., Frain M., Marshall, H., Sham, M. H., Krumlauf, R., and Charnay, P. (1996). Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development 122:543-554.

    Google Scholar 

  • Nugent, P., and Greene, R. M. (1998). MSX-1 gene expression and regulation in embryonic palatal tissue. In Vitro Cell Dev. Biol. Anim. 34:831-835.

    Google Scholar 

  • Piddington, R. L., and Goldman, A. S. (1985). Palatal development and the arachidonic acid cascade. Prog. Clin. Biol. Res. 171:295-306.

    Google Scholar 

  • Prince, V., and Lumsden, A. (1994). Hoxa-2 expression in normal and transposed rhombomeres: Independent regulation in the neural tube and neural crest. Development 120:911-923.

    Google Scholar 

  • Rijli, F. M., Mark, M., Lakkaraju, S., Dierich, A., Dolle, P., and Chambon, P. (1993). A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75:1333-1349.

    Google Scholar 

  • Satokata, I., and Maas, R. (1994). Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nature Genet. 6:348-356.

    Google Scholar 

  • Sharpe, P. M., and Ferguson, M. W. J. (1988). Mesenchymal influences on epithelial differentiation in developing systems. J. Cell Sci. Suppl. 10:195-230.

    Google Scholar 

  • Sharpe, P. T. (1995). Homeobox genes and orofacial development. Connect. Tissue Res. 32:17-25.

    Google Scholar 

  • Simeone, A., Acampora, D., Nigro, V., Faiella, A., D'Esposito, M., Stornaiuolo, A., Mavilio, F., and Boncinelli, E. (1991). Differential regulation by retinoic acid of the homeobox genes of the four HOX loci in human embryonal carcinoma cells. Mech. Dev. 33:215-228.

    Google Scholar 

  • Strahle, U., Blader, P., Adam, J., and Ingham, P. W. (1994). A simple and efficient procedure for non-isotopic in situ hybridization to sectioned material. Trends Genet. 10:75-76.

    Google Scholar 

  • Tan, D. P., Ferrante, J., Nazarali, A., Shao, X., Kozak, C. A., Guo, V., and Nirenberg, M. (1992). Murine Hox-1.11 homeobox gene structure and expression. Proc. Natl. Acad. Sci. USA 89:6280-6284.

    Google Scholar 

  • Wells, P. G. and Winn, L. M. (1996). Biochemical toxicology of chemical teratogenesis. Crit. Rev. Biochem. Mol. Biol. 31:1-40.

    Google Scholar 

  • Wells, P. G., Zubovits, J. T., Wong, S. T., Molinari, L. M., and Ali, S. (1989). Modulation of phenytoin teratogenicity and embryonic covalent binding by acetylsalicylic acid, caffeic acid and alpha-phenyl-N-t-butyl-nitrone: Implications for bioactivation by prostaglandin synthetase. Toxicol. Appl. Pharmacol. 97:192-202.

    Google Scholar 

  • Wells, P. G., Kim, P. M., Laposa, R. R., Nicol, C. J., Parman, T., and Winn, L. M. (1997). Oxidative damage in chemical teratogenesis. Mutat. Res. 396:65-78.

    Google Scholar 

  • Winn, L. M., and Wells, P. G. (1997). Evidence for embryonic prostaglandin H synthetase-catalysed bioactivation and reactive oxygen species-mediated oxidation of cellular macromolecules in phenytoin and benzo[a]pyrene teratogenesis. Free Radic. Biol. Med. 22:607-621.

    Google Scholar 

  • Winn, L. M., and Wells, P. G. (1999). Maternal administration of superoxide dismutase and catalase in phenytoin teratogenicity. Free Radic. Biol. Med. 26:266-274.

    Google Scholar 

  • Yeung, J. M., Mortimer, R. D., and Collins, P. G. (1996). Development and application of a rapid immunoassay for difenzoquat in wheat and barley products. J. Agr. Food Chem. 44:376-380.

    Google Scholar 

  • Zhang, S., and Fedoroff, S. (1997). Cellular localization of stem cell factor and c-kit receptor in mouse nervous system. J. Neurosci. Res. 47:1-15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarali, A., Puthucode, R., Leung, V. et al. Temporal and Spatial Expression of Hoxa-2 During Murine Palatogenesis. Cell Mol Neurobiol 20, 269–290 (2000). https://doi.org/10.1023/A:1007006024407

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007006024407

Navigation