Skip to main content
Log in

The Light-Dependent and Light-Independent Reduction of Protochlorophyllide a to Chlorophyllide a

  • Published:
Photosynthetica

Abstract

Two different pathways for protochlorophyllide a (Pchlide) reduction in photosynthetic organisms have been proved: one is strictly light-dependent whereas the second is light-independent. Both pathways occur in all photosynthetic cells except in angiosperms which form chlorophyll only through the light-dependent pathway. Most cells belonging to Eubacteria (i.e., the anoxygenic photosynthetic bacteria) synthesize bacteriochlorophyll through the light-independent pathway. This review deals with the physiological, biochemical, and molecular biological features of molecules involved in both pathways of Pchlide reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson, H.Y., Hiller, R.G., Walmsley, J.: Protochlorophyllide reduction and greening in angiosperms: an evolutionary perspective.-J. Photochem. Photobiol. B 41: 201-221, 1997.

    Google Scholar 

  • Akoyunoglou, G., Argyroudi-Akoyunoglou, J.H.: Effects of intermittent and continuous light on the chlorophyll formation in etiolated plants at various ages.-Physiol. Plant. 22: 288-295, 1969.

    Article  CAS  Google Scholar 

  • Apel, K., Santel, H.-J., Redlinger, T.E., Falk, H.: The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Isolation and characterization of the NADPH-protochlorophyllide oxidoreductase.-Eur. J. Biochem. 111: 251-258, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, G.A.: Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms.-J. Photochem. Photobiol. B 43: 87-100, 1998.

    Google Scholar 

  • Armstrong, G.A., Runge, S., Frick, G., Sperling, U., Apel, K.: Identification of NADPH:protochlorophyllide oxidoreductases A and B: A branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana.-Plant Physiol. 108: 1505-1517, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Benli, M., Schulz, R., Apel, K.: Effect of light on the NADPH-protochlorophyllide oxidoreductase of Arabidopsis thaliana.-Plant mol. Biol. 16: 615-625, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Bertrand, M., Schoefs, B.: Photosynthetic pigment metabolism in plants under stress.-In: Pessarakli, M. (ed.): Handbook of Plant and Crop Stress. Pp 527-543. Marcel Dekker, New York 1999.

    Google Scholar 

  • Bertrand, M., Seyfried, B., Senger, H.: In vitro photoreduction of monovinyl-and divinyl-protochlorophyllide.-Physiol. Plant. 79: A65, 1990.

    Article  Google Scholar 

  • Birve, S.J., Selstam, E., Johansson, L.B.: Secondary structure of NADPH:protochlorophyllide oxidoreductase examined by circular dichroism and prediction methods.-Biochem. J. 317: 549-555, 1996.

    PubMed  CAS  Google Scholar 

  • Böddi, B., Franck, F.: Room temperature fluorescence spectra of protochlorophyllide and chlorophyllide forms in etiolated bean leaves.-J. Photochem. Photobiol. B 41: 73-82, 1997.

    Google Scholar 

  • Böddi, B., Ryberg, M., Sundqvist, C.: Identification of four universal protochlorophyllide forms in dark grown leaves by analyses of the 77 K fluorescence emission spectra.-J. Photochem. Photobiol. B 12: 389-401, 1992.

    Google Scholar 

  • Bombart, P., Dujardin, E.: The photoreduction of zinc protochlorophyllide by isolated etioplast lamellae.-In: Sironval, C., Brouers, M. (ed.): Protochlorophyllide Reduction and Greening. Pp. 175-189. M. Nijhoff/Dr W. Junk Publishers, The Hague-Boston-Lancaster 1984.

    Google Scholar 

  • Bovey, F., Ogawa, T., Shibata, K.: Photoconvertible and non-photoconvertible form of protochlorophyll(ide) in etiolated bean leaves.-Plant Cell Physiol. 15: 1133-1137, 1974.

    CAS  Google Scholar 

  • Burke, D.H., Alberti, M., Hearst, J.E.: The Rhodobacter capsulatus chlorin reductase-encoding locus, bchA, consists of three genes, bchX, bchY, and bchZ.-J. Bacteriol. 175: 2407-2413, 1993a.

    PubMed  CAS  Google Scholar 

  • Burke, D.H., Hearst, J.E., Sidow, A.: Early evolution of photosynthesis: Clues from nitrogenase and chlorophyll iron proteins.-Proc. nat. Acad. Sci. USA 90: 7134-7138, 1993b.

    Article  PubMed  CAS  Google Scholar 

  • Choquet, Y., Rahire, M., Girard-Bascou, J., Erickson, J., Rochaix, J.-D.: A chloroplast gene is required for the light-independent accumulation of chlorophyll in Chlamydomonas reinhardtii.-EMBO J. 11: 1697-1704, 1992.

    PubMed  CAS  Google Scholar 

  • Dahlin, C., Sundqvist, C., Timko, M.P.: The in vitro assembly of the NADPH-protochlorophyllide oxidoreductase in pea chloroplasts.-Plant mol. Biol. 29: 317-330, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Darroh, P.M., Kay, S.A., Teakle, G.R., Griffiths, W.T.: Cloning and sequencing of protochlorophyllide reductase.-Biochem. J. 265: 789-798, 1990.

    Google Scholar 

  • El Hamouri, B., Brouers, M., Sironval, C.: Pathway from photoactive P633–628 protochlorophyllide to the P696–682 chlorophyllide in cucumber etioplast suspensions.-Plant Sci. Lett. 21: 375-379, 1981.

    Article  CAS  Google Scholar 

  • El Hamouri, B., Sironval, C.: A new non-photoreducible protochlorophyll(ide)-protein: P-649-642 from cucumber cotyledons. NADPH mediation of its transformation to protoreducible P-657-650.-FEBS Lett. 103: 345-347, 1979.

    Article  PubMed  CAS  Google Scholar 

  • El Mageed, H.A., El Sahhar, K.F., Robertson, K.R., Parham, R., Rebeiz, C.A.: The novel monovinyl and divinyl light-dark greening groups of plants and their relationship to the chlorophyll a biosynthetic heterogeneity in green plants.-Photochem. Photobiol. 66: 89-96, 1997.

    Article  Google Scholar 

  • Forreiter, C., Apel, K.: Light-independent and light-dependent protochlorophyllide-reducing activities and two distinct NADPH-protochlorophyllide oxidoreductase polypeptides in mountain pine (Pinus mugo).-Planta 190: 536-545, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Franck, F., Barthelemy, X., Strzałka, K.: Spectroscopic characterization of protochlorophyllide photoreduction in the greening leaf.-Photosynthetica 29: 185-194, 1993.

    CAS  Google Scholar 

  • Franck, F., Inoue, Y.: Light-driven reversible transformation of chlorophyllide P 696–682 into chlorophyllide P 688,678 in illuminated bean leaves.-Photobiochem. Photobiophys. 8: 85-96, 1984.

    CAS  Google Scholar 

  • Franck, F., Mathis, P.: A short-lived intermediate in the photoenzymatic reduction of protochlorophyll(ide) into chlorophyll(ide) at a physiological temperature.-Photochem. Photobiol. 32: 799-803, 1980.

    Article  CAS  Google Scholar 

  • Franck, F., Schmid, G.H.: The role of NADPH in the reversible phototransformation of chlorophyllide P682 into chlorophyllide P678 in etioplasts of oat.-Z. Naturforsch. 40c: 832-838, 1985.

    CAS  Google Scholar 

  • Franck, F., Schoefs, B., Barthélemy, X., Myśliwa-Kurdziel, B., Strzałka, K., Popovic, R.: Protection of native chlorophyll(ide) forms and of photosystem II against photodamage during early stages of chloroplast differentiation.-Acta Physiol. Plant. 17: 123-132, 1995.

    CAS  Google Scholar 

  • Franck, F., Strzalka, K.: Detection of the photoactive protochlorophyllide-protein complex in the light during the greening of barley.-FEBS Lett. 309: 73-77, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, Y., Matsumoto, H., Takahashi, Y., Matsubara, H.: Identification of a nifDK-like gene (ORF647) involved in the biosynthesis of chlorophyll in the cyanobacterium Plectonema boryanum.-Plant Cell Physiol. 34: 305-314, 1993.

    PubMed  CAS  Google Scholar 

  • Fujita, Y., Takahashi, Y., Chuganji, Y., Matsubara, H.: The nifH-like (frxC) gene is involved in the biosynthesis of chlorophyll in the filamentous cyanobacterium Plectonema boryanum.-Plant Cell Physiol. 33: 81-92, 1992.

    CAS  Google Scholar 

  • Fujita, Y., Takahashi, Y., Kohchi, T., Ozeki, H., Ohyama, K., Matsubara, H.: Identification of a novel nifH-like (frxC) protein in chloroplasts of the liverwort Marchantia polymorpha.-Plant mol. Biol. 13: 551-561, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, Y., Takahashi, Y., Shonai, F., Ogura, Y., Matsubara, H.: Cloning, nucleotide sequence and differential expression of the nifH and the nifH-like gene (frxC) genes from the filamentous cyanobacterium Plectonema boryanum.-Plant Cell Physiol. 32: 1093-1106, 1991.

    CAS  Google Scholar 

  • Griffiths, W.T.: Source of reducing equivalents for the in vitro synthesis of chlorophyll from protochlorophyll.-FEBS Lett. 46: 301-304, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, W.T.: Substrate-specificity studies on protochlorophyllide reduction in barley (Hordeum vulgare) etioplast membranes.-Biochem. J. 186: 267-278, 1980.

    PubMed  CAS  Google Scholar 

  • Griffiths, W.T.: Protochlorophyllide photoreduction.-In: Scheer, H. (ed.): The Chlorophylls. Pp. 433-450. CRC Press, Boca Raton 1991.

    Google Scholar 

  • Griffiths, W.T., Hugh, T., Blankenship, R.E.: The light intensity dependence of protochlorophyllide photoconversion and its significance to the catalytic mechanism of protochlorophyllide reductase.-FEBS Lett. 398: 235-238, 1996.

    Article  PubMed  CAS  Google Scholar 

  • He, Q., Brune, D., Nieman, R., Vermaas, W.: Chlorophyll a synthesis upon interruption and deletion of POR coding for the light-dependent NADPH:protochlorophyllide oxidoreductase in a photosystem-I-less/chlL strain of Synechocystis sp. PCC 6803.-Eur. J. Biochem. 253: 161-172, 1998.

    Article  PubMed  CAS  Google Scholar 

  • He, Z.-H., Li, J., Sundqvist, C., Timko, M.P.: Leaf developmental age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum L.).-Plant Physiol. 106: 537-546, 1994.

    PubMed  CAS  Google Scholar 

  • Helfrich, M., Schoch, S., Schäfer, W., Ryberg, M., Rüdiger, W.: Absolute configuration of protochlorophyllide a and substrate specificity of NADPH-protochlorophyllide oxidoreductase.-J. amer. chem. Soc. 118: 2606-2611, 1996.

    Article  CAS  Google Scholar 

  • Henningsen, K.W., Boynton, J.E.: Macromolecular physiology of plastids. IX. Development of plastid membranes during greening of dark-grown barley seedlings.-J. Cell Sci. 15: 31-55, 1974.

    PubMed  CAS  Google Scholar 

  • Holtorf, H., Apel, K.: The regulation of NADPH-protochlorophyllide oxidoreductases A and B in green barley plants kept under a diurnal light/dark cycle.-Planta 199: 289-295, 1996.

    Article  CAS  Google Scholar 

  • Holtorf, H., Reinbothe, S., Reinbothe, C., Bereza, B., Apel K.: Two routes of chlorophyllide synthesis that are differentially regulated by light in barley.-Proc. nat. Acad. Sci. USA 92: 3254-3258, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi, M., Inoue, Y., Murakami, S.: Characterization of two forms of Pchld (Pchld 650 and Pchld 640) in Pchld holochrome solubilized with detergents from squash etioplast membranes.-In: Sybesma, C. (ed.): Advances in Photosynthesis Research. Vol. IV. Pp. 765-768. Martinus Nijhoff/Dr W. Junk Publishers, The Hague-Boston-Lancaster 1984.

    Google Scholar 

  • Ikeuchi, M., Murakami, S.: Separation and characterization of prolamellar bodies and prothylakoids from squash etioplasts.-Plant Cell Physiol. 24: 71-80, 1983.

    CAS  Google Scholar 

  • Ioannides, I.M., Fasoula, D.A., Robertson, K.R., Rebeiz, C.A.: An evolutionary study of chlorophyll biosynthetic heterogeneity in green plants.-Biochem. Syst. Ecol. 22: 211-220, 1994.

    Article  CAS  Google Scholar 

  • Jeffrey, S.W., Vesk, M.: Introduction to marine phytoplankton and their pigment signatures.-In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (ed.): Phytoplankton Pigments in Oceanography. Pp. 37-84. UNESCO, Paris 1997.

    Google Scholar 

  • Jouy, M., Sironval, C.: Quenching of the fluorescence emitted by P695–682 at room temperature in etiolated illuminated leaves.-Planta 147: 127-133, 1979.

    Article  CAS  Google Scholar 

  • Kahn, A., Boardman, N.K., Thorne, S.W.: Energy transfer between protochlorophyllide molecules: Evidence for multiple chromophores in the photoactive protochlorophyllide-protein complexes in vivo and in vitro.-J. mol. Biol. 48: 85-101, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Kahn, A., Nielsen, O.F.: Photoconvertible protochlorophyll(ide)635/650 in vivo: a single species or two species in dynamic equilibrium?-Biochim. biophys. Acta 333: 409-414, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Klein, S., Schiff, J.A.: The correlated appearance of prolamellar bodies, protochlorophyll(ide) species. and the Shibata shift during development of bean etioplasts in the dark.-Plant Physiol. 49: 619-626, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Kuroda, H., Masuda, T., Ohta, H., Shioi, Y., Takamiya, K.: Light-enhanced gene expression of NADPH-protochlorophyllide oxidoreductase in cucumber.-Biochem. biophys. Res. Commun 210: 310-316, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Lancer, H.A., Cohen, C.E., Schiff, J.A.: Changing ratios of phototransformable protochlorophyll and protochlorophyllide of bean seedlings developing in the dark.-Plant Physiol. 57: 369-374, 1976

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Timko, M.P.: The pc-1 phenotype of Chlamydomonas reinhardtii results from a deletion mutation in the nuclear gene for NADPH:protochlorophyllide oxidoreductase.-Plant mol. Biol. 30: 15-37, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Lindsten, A., Ryberg, M., Sundqvist, C.: The polypeptide composition of highly purified prolamellar bodies and prothylakoids from wheat (Triticum aestivum) as revealed by silver staining.-Physiol. Plant. 72: 167-176, 1988.

    Article  CAS  Google Scholar 

  • Liro, J.I.: Über die photochemische Chlorophyllbildung bei den Phanerogamen.-Ann. Acad. Sci. fenn. A 1: 1-147, 1908.

    Google Scholar 

  • Litvin, F.F., Efimtsev, E.I., Ignatov, N.V., Belyaeva, O.B.: Evidence for the existence of two photochemical reactions in the process of chlorophyll biosynthesis and investigation of energy transfer between them.-Soviet Plant Physiol. 23: 17-24, 1976.

    CAS  Google Scholar 

  • Liu, X.-Q., Xu, H., Huang, C.: Chloroplast chlB gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii.-Plant mol. Biol. 23: 297-308, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.E.M., Timko, M.P., Wilks, H.M.: Purification and kinetic analysis of pea (Pisum sativum L.) NADPH:protochlorophyllide oxidoreductase expresed as fusion maltose-binding protein in Escherichia coli.-Biochem. J. 325: 139-145, 1997.

    PubMed  CAS  Google Scholar 

  • McCormac, D.J., Marwood, C.A., Bruce, D., Greenberg, B.M.: Assembly of photosystem I and II during the early phase of light-induced development of chloroplasts from proplastids in Spirodela oligorrhiza.-Photochem. Photobiol. 63: 837-845, 1996.

    Article  CAS  Google Scholar 

  • Michel-Wolwertz, M.R.: Chlorophyll formation in cotyledons of Pinus jeffreyi during germination in the dark. Occasional accumulation of protochlorophyll(-ide) forms.-Plant Sci. Lett. 8: 125-134, 1977.

    Article  CAS  Google Scholar 

  • Oliver, R.P., Griffiths, W.T.: Covalent labelling of the NADPH:protochlorophyllide oxidoreductase from etioplast membranes with [3H]-N-phenylmaleimide.-Biochem. J. 195: 93-101, 1981.

    PubMed  CAS  Google Scholar 

  • Oliver, R.P., Griffiths, W.T.: Pigment-protein complexes of illuminated etiolated leaves.-Plant Physiol. 70: 1019-1025, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Ouazzani Chahdi, M.A., Schoefs, B., Franek, F.: Isolation and characterization of complexes of NADPH:protochlorophyllide oxidoreductase of wheat.-Planta 206: 673-680, 1998.

    Article  Google Scholar 

  • Peschek, G.A., Hinterstoisser, B., Wastyn, M., Kuntner, O., Pineau, B., Missbichler, A., Lang, J.: Chlorophyll precursors in the plasma membrane of a cyanobacterium, Anacystis nidulans. Characterization of protochlorophyllide and chlorophyllide by spectrophotometry, spectrofluorimetry, solvent partition, and high performance liquid chromatography.-J. biol. Chem. 264: 11827-11832, 1989.

    PubMed  CAS  Google Scholar 

  • Peters, J.W., Fischer, K., Dean, D.R.: Nitrogenase structure and function — A biochemical-genetic perspective.-Annu. Rev. Microbiol. 49: 335-366, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Raskin, V.I., Marder, J.B.: Chlorophyll organization in dark-grown and light-grown pine (Pinus brutia) and barley (Hordeum vulgare).-Physiol. Plant. 101: 620-626, 1997.

    Article  CAS  Google Scholar 

  • Rebeiz, C.A., Parham, R., Fasoula, D.A., Ioannides, I.M.: Chlorophyll a biosynthetic heterogeneity.-In: The Biosynthesis of Tetrapyrrole Pigments. Pp. 177-193. J. Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore 1994.

    Google Scholar 

  • Rebeiz, C.A., Yaghí, M., Abou-Haidar, M., Castelfranco, P.A.: Protochlorophyll biosynthesis in cucumber (Cucumis sativus, L.) cotyledons.-Plant Physiol. 46: 57-63, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz, C.C., Rebeiz, C.A.: Chloroplast biogenesis 53: Ultrastructural study of chloroplast development during photoperiodic greening.-In: Akoyunoglou, G., Senger, H. (ed.): Regulation of Chloroplast Differentiation. Pp. 389-396. Alan R. Liss, New York 1986.

    Google Scholar 

  • Richard, M., Tremblay, C., Bellemare, G.: Chloroplastic genomes of Ginkgo biloba and Chlamydomonas moewusii contain chlB gene encoding one subunit of a light-independent protochlorophyllide reductase.-Curr. Genet. 26: 159-165, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Rüdiger, W., Oster, V., Schoch, S., Klement, H., Helfrich, M.: The last steps of chlorophyll biosynthesis.-In: Garab, G. (ed.): Photosynthesis: Mechanisms and Effects. Vol. IV. Pp. 3203-3208. Kluwer Acad. Publ., Dordrecht-Boston-London 1998.

    Google Scholar 

  • Ryberg, M., Artus, N., Böddi, B., Lindsten, A., Wiktorsson, B., Sundqvist, C.: Pigment-protein complexes of chlorophyll precursors.-In: Argyroudi-Akoyunoglou, J.H. (ed.): Regulation of Chloroplast Biogenesis. Pp. 217-224. Plenum Press, New York 1992.

    Google Scholar 

  • Ryberg, M., Denesh, K.: Localization of NADPH-protochlorophyllide oxidoreductase in dark-grown wheat (Triticum aestivum) by immuno-electron microscopy before and after transformation of the prolamellar bodies.-Physiol. Plant. 66: 616-624, 1986.

    Article  CAS  Google Scholar 

  • Savchenko, G.E., Abramchik, L.M., Klyuchareva, E.A., Chaika, M.T.: NADPH:protochlorophyllide oxidoreductase in barley (Hordeum vulgare) seedlings.-In: Baltscheffsky, M. (ed.): Current Research in Photosynthesis. Vol. III. Pp. 819-822. Kluwer Acad. Publ., Dordrecht-Boston-London 1990.

    Google Scholar 

  • Schoch, S., Helfrich, M., Wiktorsson, B., Sundqvist, C., Rüdiger, W., Ryberg, M.: Photoreduction of zinc protopheophorbide b with NADPH-protochlorophyllide oxidoreductase from etiolated wheat (Triticum aestivum L.).-Eur. J. Biochem. 229: 291-298, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Schoefs, B., Bertrand, M.: Chlorophyll biosynthesis.-In: Pessarakli, M. (ed.): Handbook of Photosynthesis. Pp. 49-71. Marcel Dekker, New York-Basel-Hong Kong 1997.

    Google Scholar 

  • Schoefs, B., Bertrand, M., Franck, F.: Plant greening: Biogenesis of photosynthetic apparatus in bean leaves irradiated shortly after the germination.-Photosynthetica 27: 497-504, 1992.

    CAS  Google Scholar 

  • Schoefs, B., Bertrand, M., Franck, F.: Spectral heterogeneity of the photoinactive protochlorophyllide in dark-grown bean leaves and pine cotyledons.-In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. III. Pp. 1009-1012. Kluwer Acad. Publ., Dordrecht-Boston-London 1995.

    Google Scholar 

  • Schoefs, B., Bertrand, M., Lemoine, Y.: Changes in the photosynthetic pigments in bean leaves during the first photoperiod of greening and the subsequent dark-phase. Comparison between old (10-d-old) leaves and young (2-d-old) leaves.-Photosynth. Res. 57: 203-213, 1998.

    Article  Google Scholar 

  • Schoefs, B., Bertrand, M., Lemoine, Y., Franck, F.: Determination of the pigment composition of dark-grown pine cotyledons by reversed-phase high-performance liquid chromatography.-Arch. Physiol. Biochem. 105: 15, 1997.

    Google Scholar 

  • Schoefs, B., Franck, F.: Photosystem II assembly in 2-day-old bean leaves during the first 16 hrs of greening.-Compt. rend. Acad. Sci. Paris, Sér. III 313: 441-445, 1991.

    CAS  Google Scholar 

  • Schoefs, B., Franck, F.: Photoreduction of protochlorophyllide to chlorophyllide in 2-d-old dark-grown bean (Phaseolus vulgaris cv. Commodore) leaves. Comparison with 10-d-old dark-grown (etiolated) leaves.-J. exp. Bot. 44: 1053-1057, 1993.

    Article  CAS  Google Scholar 

  • Schoefs, B., Franck, F.: Role of NADPH:protochlorophyllide reductase in photoprotection of newly formed chlorophyllide.-In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. III. Pp. 1013-1016. Kluwer Acad. Publ., Dordrecht-Boston-London 1995.

    Google Scholar 

  • Schoefs, B., Franck, F.: Light-minus-dark absorbance spectra during photoactive Pchlide photoreduction.-In: Carmona, P., Navarro, R., Hernanz, A. (ed.): Spectroscopy of Biological Molecules: Modern Trends. Pp. 133-134. Kluwer Academic Publishers, Dordrecht 1997.

    Google Scholar 

  • Schoefs, B., Franck, F.: Chlorophyll synthesis in dark-grown pine primary needles.-Plant Physiol. 118: 1159-1168, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Schoefs, B., Garnir, H.P., Bertrand, M.: Comparison of the photoreduction of protochlorophyllide to chlorophyllide in leaves and cotyledons from dark-grown bean as a function of age.-Photosynth. Res. 41: 405-417, 1994.

    Article  CAS  Google Scholar 

  • Schulz, R., Steinmüller, K., Klaas, M., Forreiter, C., Rasmussen, S., Hiller, C., Apel, K.: Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli.-Mol. gen. Genet. 217: 355-361, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, R., Senger, H.: Protochlorophyllide reductase: a key enzyme in the greening process.-In: Sundqvist, C., Ryberg, M. (ed.): Pigment-Protein Complexes in Plastids: Synthesis and Assembly. Pp. 179-218. Academic Press, San Diego-New York-Boston-London-Sydney-Tokyo-Toronto 1993.

    Google Scholar 

  • Selstam, E., Widell, A.: Characterization of prolamellar bodies, from dark-grown seedlings of Scots pine, containing light-and NADPH-dependent protochlorophyllide oxidoreductase.-Physiol. Plant. 67: 345-352, 1986.

    Article  CAS  Google Scholar 

  • Selstam, E., Widell, A., Johansson, L.B.-Å: A comparison of prolamellar bodies from wheat, Scots pine and Jeffrey pine. Pigment spectra and properties of protochlorophyllide oxidoreductase.-Physiol. Plant. 70: 209-214, 1987.

    Article  CAS  Google Scholar 

  • Shaw, P., Henwood, J., Oliver, R., Griffiths, T.: Immunogold localisation of protochlorophyllide oxidoreductase in barley etioplasts.-Eur. J. Cell Biol. 39: 50-55, 1985.

    Google Scholar 

  • Shibata, K.: Spectroscopic studies on chlorophyll formation in intact leaves.-J. Biochem. 44: 147-173, 1957

    CAS  Google Scholar 

  • Sironval, C., Michel-Wolwertz, M.-R.: Quelques particularités du métabolisme des chlorophylles.-In: La Photosynthèse. Pp. 317-342. Edit. CNRS, Paris 1963.

    Google Scholar 

  • Sisler, E.C., Klein, W.H.: The effect of age and various chemical substances on the lag phase of chlorophyll synthesis in dark-grown bean seedlings.-Physiol. Plant. 16: 315-322, 1963.

    Article  CAS  Google Scholar 

  • Spano, A.J., He, Z.H., Michel, H., Hunt, D.F., Timko, M.P.: Molecular cloning, nuclear gene structure and developmental expression of NADPH:protochlorophyllide oxidoreductase in pea (Pisum sativum L.).-Plant mol. Biol. 18: 967-972, 1992a.

    Article  PubMed  CAS  Google Scholar 

  • Spano, A.J., He, Z.H., Timko, M.P.: NADPH:protochlorophyllide oxidoreductase in white (Pinus strobus) and loblolly pine (P. taeda).-Mol. gen. Genet. 236: 86-95, 1992b.

    PubMed  CAS  Google Scholar 

  • Sperling, U., Franck, F., van Cleve, B., Frick, G., Apel, K., Armstrong, G.: Etioplast differentiation in Arabidopsis: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide F655 to the cop1 photomorphogenic mutant.-Plant Cell 10: 283-296, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Sperling, U., van Cleve, B., Frick, G., Apel, K., Armstrong, G.: Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedlings survival in white light and protects against photooxidative damage.-Plant J. 12: 649-658, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, J.Y., Bauer, C.E.: Light-independent chlorophyll biosynthesis: Involvement of the chloroplast gene chlL (frxC).-Plant Cell 4: 929-940, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, J.Y., Bauer, C.E.: A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants.-Proc. nat. Acad. Sci. USA 92: 3749-3753, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, J.Y., Bollivar, D.W., Bauer, C.E.: Genetic analysis of chlorophyll biosynthesis.-Annu. Rev. Genet. 31: 61-89, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Teakle, G.R., Griffiths, W.T.: Cloning, characterisation and import studies on protochlorophyllide reduction from wheat (Triticum aestivum).-Biochem. J. 296: 225-230, 1993.

    PubMed  CAS  Google Scholar 

  • Wermuth, B., Bohren, K.M., Heinemann, G., Wartburg, J.P. von, Gabbay, K.H.: Human carbonyl reductase: nuclotide sequence analysis of a cDNA and amino acid sequence of the encoded protein.-J. biol. Chem. 263: 16185-16188, 1988.

    PubMed  CAS  Google Scholar 

  • Whatley, J.M.: Variations in the basic pathway of chloroplast development.-New Phytol. 78: 407-420, 1977.

    Article  Google Scholar 

  • Wilks, H.M., Timko, M.P.: A light-dependent complementation system for the analysis of NADPH:protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzymatic activity.-Proc. nat. Acad. Sci. USA 92. 724-728, 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoefs, B. The Light-Dependent and Light-Independent Reduction of Protochlorophyllide a to Chlorophyllide a. Photosynthetica 36, 481–496 (2000). https://doi.org/10.1023/A:1007002101856

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007002101856

Navigation