Skip to main content
Log in

Kinetics and mechanism of the oxidation of neutralized α-hydroxy acids by tris(pyridine-2-carboxylato)manganese(III)

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of the neutralized α-hydroxy acids: lactic, α-hydroxyisobutyric, mandelic, benzilic and atrolactic acids by tris(pyridine-2-carboxylato)manganese(III) have been studied. The reactions were carried out in a Na(pic)-picH [Na(pic) = sodium salt of pyridine-2-carboxylic acid and picH = pyridine-2-carboxylic acid] buffer medium in the 4.89–6.10pH range. The oxidation rate was found to be independent of pH, and rate follows the order: benzilate > mandelate >atrolactate>lactate > α-hydroxy isobutyrate. The oxidation products are MeCHO, Me2CO, PhCHO, Ph2CO and PhCOMe for the respective reactions. A mechanism is proposed involving intermediate formation of hepta-coordinated MnIII complexes in a fast step. The complexes then decompose to give free radicals and MnII in the rate determining step. The free radicals subsequently react with another molecule of the MnIII species to give the respective carbonyl compounds in a fast step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. K. Sen Gupta, S. Maiti, U. Chatterjee and T. Samanta, Transition Met. Chem., 7, 89 (1982).

    Google Scholar 

  2. P. Levesley and W. A. Waters, J. Chem. Soc., 217 (1955).

  3. K. K. Sen Gupta, A. Banerjee and H. Chatterjee, Tetrahedron, 48, 5323 (1992).

    Google Scholar 

  4. J. R. Jones, W. A. Waters and J. S. Littler, J. Chem. Soc., 630 (1961).

  5. B. Krishna and K. C. Tewari, J. Chem. Soc., 3097 (1961).

  6. A. McAuley, J. Chem. Soc., 4054 (1965).

  7. S. Prasad and J. Choudhary, Ind. J. Chem., 17A, 167 (1979).

    Google Scholar 

  8. S. B. Hanna and S. A. Sarac, J. Org. Chem., 42, 2063 (1977).

    Google Scholar 

  9. S. B. Hanna and S. A. Sarac, J. Org. Chem., 42, 2069 (1977).

    Google Scholar 

  10. K. K. Sen Gupta and T. Sarkar, Tetrahedron, 31, 123 (1975).

    Google Scholar 

  11. K. K. Sen Gupta, A. K. Chatterjee and J. K. Chakladar, Ind. J. Chem., 10, 493 (1972).

    Google Scholar 

  12. B. N. Figgis, C. L. Raston, R. P. Sharma and A. H. White, Aust. J. Chem., 31, 2545 (1978).

    Google Scholar 

  13. R. C. Weast, C. R. C. Handbook of Chemistry and Physics, 66th Edit., CRC Press, USA, 1986 p. D 162.

    Google Scholar 

  14. S. Ghosh, P. K. Ray, T. K. Bandyopadhyay and A. K. Deb, Z. Naturforsch, 36b, 1270 (1981).

    Google Scholar 

  15. M. M. Ray, J. N. Adhya, D. Biswas and S. N. Poddar, Aust. J. Chem., 19, 1737 (1966).

    Google Scholar 

  16. A. I. Vogel, Textbook of Quantitative Inorganic Analysis, 4th Edit., ELBS, Longman, London, 1986, pp. 348–349.

    Google Scholar 

  17. F. Feigl, V. Anger and R. Oesper, Spot Tests in Organic Analysis, 7th Edit., Elsevier, New York, 1966, p. 387.

    Google Scholar 

  18. E. H. Huntress and S. P. Mulliken, Identification of Pure Organic Compounds, Wiley, Inc. New York, Fourth Printing, 1953, pp. 50, 44, 374, 388, 60, 363, 610.

    Google Scholar 

  19. R. T. Morrison and R. N. Boyd, Organic Chemistry, Allyn and Bacon, Boston, 1962, p. 715

    Google Scholar 

  20. G. St. Nikolov, Inorg. Chim. Acta, 5, 559 (1971).

    Google Scholar 

  21. O. Exner, Nature, 201, 488 (1964).

    Google Scholar 

  22. J. E. Leffer, J. Org. Chem., 20, 1202 (1955).

    Google Scholar 

  23. W. A. Waters, J. R. Jones and J. S. Littler, J. Chem. Soc., 240 (1961).

  24. T. J. Kemp and W. A. Waters, J. Chem. Soc., 1192 (1964).

  25. F. A. Westheimer, Chem. Rev., 45, 419 (1949).

    Google Scholar 

  26. G. V. Bakore and S. Narain, J. Chem. Soc., 3419 (1963).

  27. S. Richards, B. Pedersen, J. V. Silverton and J. L. Hoard, Inorg. Chem., 3, 27 (1964).

    Google Scholar 

  28. R. E. Hamm and M. A. Suwyn, Inorg. Chem., 6, 139 (1967).

    Google Scholar 

  29. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Comprehensive Coordination Chemistry, Pergamon Press, Oxford, 1st Edit., 1987, Vol. 4, p. 64.

    Google Scholar 

  30. S. Kundu, A. K. Bhattacharya and R. Banerjee, J. Chem. Soc., Dalton Trans., 3952 (1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, K.K.S., Bhattacharjee, N., Pal, B. et al. Kinetics and mechanism of the oxidation of neutralized α-hydroxy acids by tris(pyridine-2-carboxylato)manganese(III). Transition Metal Chemistry 24, 268–273 (1999). https://doi.org/10.1023/A:1006989810426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006989810426

Keywords

Navigation