Skip to main content
Log in

A structural model for the copper(II) site of Cu-Zn superoxide dismutase: preparation, crystal structure and properties of [Cu(Mebta)4(H2O)](ClO4)2·0.4EtOH (Mebta = 1-methylbenzotriazole)

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Reaction of Cu(ClO4)2·6H2O with 1-methylbenzotriazole (Mebta) in EtOH yields [Cu(Mebta)4(H2O)] (ClO4)2·0.4EtOH in ca. 75% yield. The structure of this salt has been determined by single-crystal X-ray crystallography. Mebta behaves as a monodentate ligand binding through N(3). The metal coordination geometry is best described as distorted square pyramidal with the H2O ligand occupying the apical site. The complex was also characterized by molar conductivity, room-temperature effective magnetic moment and spectroscopic (i.r., far-i.r., u.v./vis, e.s.r.) studies. The data are discussed in terms of the nature of bonding and known structure. Comparison between the structural and spectroscopic properties of [Cu(Mebta)4(H2O)](ClO4)2·0.4EtOH and those of the CuII site of Cu–Zn superoxide dismutase shows that the former can be considered as a fairly good model for the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Selverstone Valentine in I. Bertini, H.B. Gray, S.J. Lippard and J. Selverstone Valentine (eds), Bioinorganic Chemistry, University Science Books, Mill Valley, California, 1994, p. 298.

    Google Scholar 

  2. S.J. Lippard and J.M. Berg, Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, California, 1994, p. 325.

    Google Scholar 

  3. J.L. Pierre, P. Chautemps, S. Refaif, C. Beguin, A. El Marzouki, G. Serratrice, E. Saint-Aman and P. Rey, J. Am. Chem. Soc., 117, 1965 (1995) and refs cited therein.

  4. H.J. Scholl, J. Hx00FC;ttermann and M.S. Viezzoli, Inorg. Chim. Acta, 273, 131 (1998) and refs cited therein.

    Article  Google Scholar 

  5. I. Fridovich, Ann. Rev. Biochem., 44, 147 (1975).

    Article  PubMed  Google Scholar 

  6. J.A. Tainer, E.D. Getzoff, J.S. Richardson and D.C. Richardson, Nature, 306, 284 (1983).

    PubMed  Google Scholar 

  7. D.F. Xiang, X.S. Tan, Q.W. Hang, W.X. Tang, B.M. Wu and T.C.W. Mak, Inorg. Chim. Acta, 277, 21 (1998).

    Google Scholar 

  8. W.H. Koppenol, Nature, 262, 420 (1976).

    PubMed  Google Scholar 

  9. J.M. McCord, S.H. Syokes and K. Wong, Adv. In¯amm. Res., 1, 273 (1979).

    Google Scholar 

  10. B. Halliwell and J.M.C. Gutteridge, J. Biochem., 219, 1 (1984).

    Google Scholar 

  11. B. Halliwell and J.M.C. Gutteridge, Arch. Biochem. Biophys., 246, 501 (1986).

    PubMed  Google Scholar 

  12. L.W. Oberley and G.R. Buettner, Cancer Res., 39, 1141 (1979).

    PubMed  Google Scholar 

  13. J.M. McCord, Science, 185, 529 (1974).

    PubMed  Google Scholar 

  14. D.F. Xiang, C.Y. Duan, X.S. Tan, Q.W. Hang and W.X. Tang, J. Chem. Soc., Dalton Trans., 1201 (1998) and refs cited therein.

  15. J.R.J. Sorenson, Prog. Med. Chem., 26, 437 (1989).

    PubMed  Google Scholar 

  16. Q. Lu, Q.H. Luo, A.B. Dai, Z.Y. Zhou and G.Z. Hu, J. Chem. Soc.,Chem. Commun., 1429 (1990) and refs. therein.

  17. M. Zongwan, C. Dong, T. Wenxia, Y. Kaibei and L. Li, Polyhedron, 11, 191 (1992).

    Google Scholar 

  18. R. Bhalla, M. Helliwell and C.D. Garner, Inorg. Chem., 36, 2944 (1997).

    PubMed  Google Scholar 

  19. M. Linss and U. Weser, Inorg. Chim. Acta, 125, 117 (1986).

    Google Scholar 

  20. Q. Luo, Q. Lu, A. Dai and L. Huang, J. Inorg. Biochem., 51, 655 (1993).

    Article  Google Scholar 

  21. Q. Lu, C.Y. Shen and Q.H. Luo, Polyhedron, 12, 2005 (1993).

    Google Scholar 

  22. J. Mx00FC;ller, K. Felix, C. Maichle, E. Lengfelder, J. Strähle and U. Weser, Inorg. Chim. Acta, 233, 11 (1995).

    Google Scholar 

  23. C.M. Liu, R.G. Xiong, X.Z. You and Y.J. Liu, Polyhedron, 15, 4565 (1996).

    Google Scholar 

  24. C.M. Liu, R.G. Xiong, X.Z. You, H.K. Fun and K. Sivakumar, Polyhedron, 16, 119 (1997).

    Google Scholar 

  25. J.C. Plakatouras, D. Mentzafos, A. Terzis, T. Bakas, V. Papaefthymiou and S.P. Perlepes, Polyhedron, 11, 2657 (1992).

    Google Scholar 

  26. D. Kovala-Demertzi and S.P. Perlepes, Transition Met. Chem., 19, 7 (1994).

    Google Scholar 

  27. E. Diamantopoulou, Th. F. Zafiropoulous, S.P. Perlepes, C.P. Raptopoulou and A. Terzis, Polyhedron, 13, 1593 (1994).

    Google Scholar 

  28. J.C. Plakatouras, T. Bakas, C.J. Huffman, J.C. Huffman, V. Papaefthymiou and S.P. Perlepes, J. Chem. Soc., Dalton Trans., 2737 (1994).

  29. K. Skorda, E.G. Bakalbassis, J. Mrozinski, S.P. Perlepes, C.P. Raptopoulou and A. Terzis, J. Chem. Soc., Dalton Trans., 2317 (1995).

  30. E.G. Bakalbassis, E. Diamantopoulou, S.P. Perlepes, C.P. Raptopoulou, V. Tangoulis, A. Terzis and Th.F. Zafiropoulous, J. Chem. Soc., Chem. Commun., 1347 (1995).

  31. V. Tangoulis, C.P. Raptopoulou, A. Terzis, E.G. Bakalbassis, E. Diamantopoulou and S.P. Perlepes, Inorg. Chem., 37, 3142 (1998).

    Google Scholar 

  32. G.M. Sheldrick. SHELXS-86. Program for the solution of crystal structures, University of GoÈ ttingen, Germany, 1986.

  33. G.M. Sheldrick. SHELXL-93. Program for crystal structure refinement, University of GoÈ ttingen, Germany, 1993.

  34. S.P. Perlepes, J.C. Huffman and G. Christou, Polyhedron, 11, 1471 (1992).

    Google Scholar 

  35. A.W. Addison, T.N. Rao, J. Reedijk, J. Rijn and G.C. Verschoor, J. Chem. Soc., Dalton Trans., 1349 (1984).

  36. I. Bertini, L. Banci and M. Piccioli, Coord. Chem. Rev., 100, 67 (1990).

    Article  Google Scholar 

  37. W.J. Geary, Coord. Chem. Rev., 7, 81 (1971).

    Article  Google Scholar 

  38. L.S. Gelfand, F.J. Iaconiani, L.L. Pytlewski, A.N. Speca, C.M. Mikulski and N.M. Karayannis, J. Inorg. Nucl. Chem., 42, 377 (1980).

    Google Scholar 

  39. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn., Wiley, New York, 1986, pp. 139, 227±230, 251, 253.

    Google Scholar 

  40. J. Reedijk, A.R. Siedle, R.A. Velapoldi and J.A.M. Van Hest, Inorg. Chim. Acta, 74, 109 (1983).

    Google Scholar 

  41. B. Slootmaekers, S.P. Perlepes and H.O. Desseyn, Spectrochim. Acta, 45A, 1211 (1989).

    Google Scholar 

  42. P. Jacobs, K. Dimitrou, S.P. Perlepes, J. Plakatouras and H.O. Desseyn, Bull. Soc. Chim. Belg., 98, 901 (1989).

    Google Scholar 

  43. C. Vansant, H.O. Desseyn, V. Tangoulis, C.P. Raptopoulou, A. Terzis and S.P. Perlepes, Polyhedron, 14, 2115 (1995).

    Google Scholar 

  44. R.J.H. Clark and C.S. Williams, Inorg. Chem., 4, 350 (1965).

    Google Scholar 

  45. W.R. McWhinnie, J.Inorg. Nucl. Chem., 27, 1063 (1965).

    Google Scholar 

  46. A.B.P. Lever and E. Mantovani, Inorg. Chem., 10, 817 (1971).

    Google Scholar 

  47. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th edn., Wiley, New York, 1988, p. 768.

    Google Scholar 

  48. M. Palaniandavar, R.J. Butcher and A.W. Addison, Inorg. Chem., 35, 467 (1996).

    PubMed  Google Scholar 

  49. A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd Edit., Elsevier, Amsterdam, 1984, pp. 554±567.

    Google Scholar 

  50. H.W. Richardson, J.R. Wasson, W.E. Estes and W.E. Hatfield, Inorg. Chim. Acta, 23, 205 (1977)

    Google Scholar 

  51. B.J. Hathaway, J. Chem. Soc., Dalton Trans., 1196 (1972).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skorda, K., Perlepes, S.P., Raptopoulou, C.P. et al. A structural model for the copper(II) site of Cu-Zn superoxide dismutase: preparation, crystal structure and properties of [Cu(Mebta)4(H2O)](ClO4)2·0.4EtOH (Mebta = 1-methylbenzotriazole). Transition Metal Chemistry 24, 541–545 (1999). https://doi.org/10.1023/A:1006988106184

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006988106184

Keywords

Navigation