Skip to main content
Log in

Asymmetrical off–on switches for crosstalk reduction in switching networks

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An off–on switching scheme is introduced which blocks a waveguide path in the passive off-state and transmits the signal in the active on-state. The operating principle is based on the self-diffraction of a narrow guided beam when it escapes from a waveguide with two-dimensional confinement into a region of appropriate length with basically one-dimensional confinement. In particular, a remaining interface of the initial waveguide superimposes reflection, which in sum results in a very efficient asymmetrical blow out of the guided power. In the active on-state, low-loss waveguiding is sustained when an electrode causes an appropriate refractive index change, e.g., due to the thermo-optical effect. Thus, the signal is received in the output waveguide, the identical counterpart of the input guide. The switching behaviour is almost binary with minimal wavelength dependence. This makes the device useful for switching and modulation in a multi-wavelength optical network. For a realistic polymeric waveguide configuration, simulations indicate on-off signal ratios of >30 dB. This satisfies the requirements for crosstalk reduction in switching networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, R. and C. Tsai. IEEE J. Quantum Electron. 23 2205, 1987.

    Google Scholar 

  • Haruna, M. and J. Koyama. Electron. Lett. 17 842, 1981.

    Google Scholar 

  • Hida, Y., H. Onose and S. Imamura. Polymer waveguide thermooptic switch with low electric power consumption at 1:3 µm. IEEE Photon. Technol. Lett. 5 782, 1993.

    Google Scholar 

  • Huang, T., G. Simonis, V. Chinni, P. Wai and C. Menyuk. Opt. Lett. 19 2107, 1994.

    Google Scholar 

  • Januar, I., R. Feuerstein, A. Mickelson and J. Sauer. J. Lightwave Technol. 10 1202, 1992.

    Google Scholar 

  • Khan, M., J. Zucker, T. Chang, N. Sauer and M. Divino. IEEE Photon. Technol. Lett. 6 394, 1994.

    Google Scholar 

  • Lin, S., W. Feng, J. Powelson, R. Feuerstein, L. Bintz, D. Tomic and A. Mickelson. J. Lightwave Technology 14 2012, 1996.

    Google Scholar 

  • Murphy, E., T. Murphy, R. Irvin, R. Grencavich, G. Davis and G. Richards. Proc. ECIO, paper EFD5, 1997.

  • Pennings, E., G.-D. Khoe, M. Smit and T. Staring. IEEE J. Select. Topics Quantum Electron. 2 151, 1996.

    Google Scholar 

  • Silberberg, Y., P. Perlmutter and J. Baran. Appl. Phys. Lett. 51 1230, 1987.

    Google Scholar 

  • Soldano, L. and E. Pennings. J. Lightwave Technol. 13 615, 1995.

    Google Scholar 

  • Takizawa, K. Opt. Lett. 11 818, 1986.

    Google Scholar 

  • Thurston, R., E. Kapon and Y. Silberberg. Proc. SPIE 836 211, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pertsch, T., Wächter, C. Asymmetrical off–on switches for crosstalk reduction in switching networks. Optical and Quantum Electronics 31, 957–963 (1999). https://doi.org/10.1023/A:1006988008605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006988008605

Navigation